論文の概要: MSTF: Multiscale Transformer for Incomplete Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2407.05671v1
- Date: Mon, 8 Jul 2024 07:10:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:50:12.345193
- Title: MSTF: Multiscale Transformer for Incomplete Trajectory Prediction
- Title(参考訳): MSTF:不完全な軌道予測のためのマルチスケールトランス
- Authors: Zhanwen Liu, Chao Li, Nan Yang, Yang Wang, Jiaqi Ma, Guangliang Cheng, Xiangmo Zhao,
- Abstract要約: 本稿では,不完全な軌道予測のためのエンドツーエンドフレームワークであるMultiscale Transformer(MSTF)を提案する。
MSTFは、Multiscale Attention Head (MAH)とInformation Increment-based Pattern Adaptive (IIPA)モジュールを統合している。
2つの大規模実世界のデータセットを用いて提案したMSTFモデルを評価する。
- 参考スコア(独自算出の注目度): 30.152217860860464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion forecasting plays a pivotal role in autonomous driving systems, enabling vehicles to execute collision warnings and rational local-path planning based on predictions of the surrounding vehicles. However, prevalent methods often assume complete observed trajectories, neglecting the potential impact of missing values induced by object occlusion, scope limitation, and sensor failures. Such oversights inevitably compromise the accuracy of trajectory predictions. To tackle this challenge, we propose an end-to-end framework, termed Multiscale Transformer (MSTF), meticulously crafted for incomplete trajectory prediction. MSTF integrates a Multiscale Attention Head (MAH) and an Information Increment-based Pattern Adaptive (IIPA) module. Specifically, the MAH component concurrently captures multiscale motion representation of trajectory sequence from various temporal granularities, utilizing a multi-head attention mechanism. This approach facilitates the modeling of global dependencies in motion across different scales, thereby mitigating the adverse effects of missing values. Additionally, the IIPA module adaptively extracts continuity representation of motion across time steps by analyzing missing patterns in the data. The continuity representation delineates motion trend at a higher level, guiding MSTF to generate predictions consistent with motion continuity. We evaluate our proposed MSTF model using two large-scale real-world datasets. Experimental results demonstrate that MSTF surpasses state-of-the-art (SOTA) models in the task of incomplete trajectory prediction, showcasing its efficacy in addressing the challenges posed by missing values in motion forecasting for autonomous driving systems.
- Abstract(参考訳): 自律走行システムにおいて運動予測は重要な役割を担い、周囲の車両の予測に基づいて衝突警告と合理的な局所経路計画を実行することができる。
しかし、一般的な手法はしばしば完全な観測軌道を仮定し、物体の閉塞、スコープ制限、センサーの故障によって引き起こされる損失の潜在的な影響を無視する。
このような監視は、必然的に軌道予測の精度を損なう。
この課題に対処するために,不完全な軌道予測のために細心の注意を払って構築されたMultiscale Transformer (MSTF) と呼ばれるエンドツーエンドのフレームワークを提案する。
MSTFは、Multiscale Attention Head (MAH)とInformation Increment-based Pattern Adaptive (IIPA)モジュールを統合している。
特に、MAHコンポーネントは、多頭部アテンション機構を用いて、様々な時間的粒度からトラジェクトリシーケンスのマルチスケール動作表現を同時にキャプチャする。
このアプローチは、異なるスケールにわたる動きにおけるグローバルな依存関係のモデリングを促進するため、欠落した値の悪影響を軽減する。
さらに、IIPAモジュールは、データの欠落パターンを分析して、時間ステップ間の動きの連続性表現を適応的に抽出する。
連続性表現は、より高レベルな動き傾向を規定し、MSTFを誘導し、動きの連続性に整合した予測を生成する。
2つの大規模実世界のデータセットを用いて提案したMSTFモデルを評価する。
実験の結果,MSTFは不完全軌跡予測のタスクにおいて最先端(SOTA)モデルを超えており,自律走行システムにおける動作予測の欠落による課題に対処する上での有効性が示された。
関連論文リスト
- Multi-scale Temporal Fusion Transformer for Incomplete Vehicle Trajectory Prediction [23.72022120344089]
運動予測は自律運転システムにおいて重要な役割を果たす。
不完全な車両軌道予測のための新しいエンドツーエンドフレームワークを提案する。
道路交通シナリオと都市交通シナリオから得られた4つのデータセットについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2024-09-02T02:36:18Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
制御可能拡散軌道(CDT)と呼ばれる新しい軌道生成器を導入する。
CDTは、情報と社会的相互作用をトランスフォーマーに基づく条件記述拡散モデルに統合し、将来の軌跡の予測を導く。
マルチモーダル性を確保するため,直進,右折,左折などの軌道モードを指示する行動トークンを組み込んだ。
論文 参考訳(メタデータ) (2024-02-06T13:16:54Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - MTR++: Multi-Agent Motion Prediction with Symmetric Scene Modeling and
Guided Intention Querying [110.83590008788745]
自律運転システムにとって、複雑な運転シナリオを理解し、情報的な決定を下すためには、動きの予測が不可欠である。
本稿では,これらの課題に対処するためのMotion TRansformer (MTR) フレームワークを提案する。
最初のMTRフレームワークは、学習可能な意図クエリを備えたトランスフォーマーエンコーダ-デコーダ構造を利用する。
複数のエージェントに対するマルチモーダル動作を同時に予測するMTR++フレームワークを導入する。
論文 参考訳(メタデータ) (2023-06-30T16:23:04Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
道路交差点において,信号機や信号機を使わずに複数の非通信的合理的エージェント間の分散ナビゲーションに着目した。
我々の重要な洞察は、交差点の幾何学的構造と、効率的に動くエージェントのインセンティブが衝突を避け(合理性)、起こりうる行動の空間を減少させるということである。
マルチエージェント交差点シーンにおける高次モードの軌道表現を再構成するデータ駆動型軌道予測機構であるMTPを設計する。
論文 参考訳(メタデータ) (2020-11-08T02:56:42Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
人間の動きに関する推論は、安全で社会的に認識されたロボットナビゲーションにとって重要な前提条件である。
我々は,多種多様なエージェントの軌道を予測できるモジュール型グラフ構造化リカレントモデルであるTrajectron++を提案する。
実世界の軌道予測データセットにおいて,その性能を実証する。
論文 参考訳(メタデータ) (2020-01-09T16:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。