BEVWorld: A Multimodal World Model for Autonomous Driving via Unified BEV Latent Space
- URL: http://arxiv.org/abs/2407.05679v2
- Date: Thu, 18 Jul 2024 08:33:43 GMT
- Title: BEVWorld: A Multimodal World Model for Autonomous Driving via Unified BEV Latent Space
- Authors: Yumeng Zhang, Shi Gong, Kaixin Xiong, Xiaoqing Ye, Xiao Tan, Fan Wang, Jizhou Huang, Hua Wu, Haifeng Wang,
- Abstract summary: We present BEVWorld, a novel approach that tokenizes multimodal sensor inputs into a unified and compact Bird's Eye View latent space for environment modeling.
Experiments demonstrate the effectiveness of BEVWorld in autonomous driving tasks, showcasing its capability in generating future scenes and benefiting downstream tasks such as perception and motion prediction.
- Score: 57.68134574076005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: World models are receiving increasing attention in autonomous driving for their ability to predict potential future scenarios. In this paper, we present BEVWorld, a novel approach that tokenizes multimodal sensor inputs into a unified and compact Bird's Eye View (BEV) latent space for environment modeling. The world model consists of two parts: the multi-modal tokenizer and the latent BEV sequence diffusion model. The multi-modal tokenizer first encodes multi-modality information and the decoder is able to reconstruct the latent BEV tokens into LiDAR and image observations by ray-casting rendering in a self-supervised manner. Then the latent BEV sequence diffusion model predicts future scenarios given action tokens as conditions. Experiments demonstrate the effectiveness of BEVWorld in autonomous driving tasks, showcasing its capability in generating future scenes and benefiting downstream tasks such as perception and motion prediction. Code will be available at https://github.com/zympsyche/BevWorld.
Related papers
- CASPFormer: Trajectory Prediction from BEV Images with Deformable
Attention [4.9349065371630045]
We propose Context Aware Scene Prediction Transformer (CASPFormer), which can perform multi-modal motion prediction from spatialized Bird-Eye-View (BEV) images.
Our system can be integrated with any upstream perception module that is capable of generating BEV images.
We evaluate our model on the nuScenes dataset and show that it reaches state-of-the-art across multiple metrics.
arXiv Detail & Related papers (2024-09-26T12:37:22Z) - GenAD: Generalized Predictive Model for Autonomous Driving [75.39517472462089]
We introduce the first large-scale video prediction model in the autonomous driving discipline.
Our model, dubbed GenAD, handles the challenging dynamics in driving scenes with novel temporal reasoning blocks.
It can be adapted into an action-conditioned prediction model or a motion planner, holding great potential for real-world driving applications.
arXiv Detail & Related papers (2024-03-14T17:58:33Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion [36.321494200830244]
Copilot4D is a novel world modeling approach that first tokenizes sensor observations with VQVAE, then predicts the future via discrete diffusion.
Our results demonstrate that discrete diffusion on tokenized agent experience can unlock the power of GPT-like unsupervised learning for robotics.
arXiv Detail & Related papers (2023-11-02T06:21:56Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
We propose ProbVLM, a probabilistic adapter that estimates probability distributions for the embeddings of pre-trained vision-language models.
We quantify the calibration of embedding uncertainties in retrieval tasks and show that ProbVLM outperforms other methods.
We present a novel technique for visualizing the embedding distributions using a large-scale pre-trained latent diffusion model.
arXiv Detail & Related papers (2023-07-01T18:16:06Z) - PowerBEV: A Powerful Yet Lightweight Framework for Instance Prediction
in Bird's-Eye View [14.113805629254191]
Bird's-eye view (BEV) representations are commonplace in perception for autonomous driving.
Existing approaches for BEV instance prediction rely on a multi-task auto-regressive coupled with post-processing to predict future instances.
We propose an efficient novel end-to-end framework named POWERBEV, which differs in several design choices aimed at reducing the inherent redundancy in previous methods.
arXiv Detail & Related papers (2023-06-19T08:11:05Z) - DiffBEV: Conditional Diffusion Model for Bird's Eye View Perception [14.968177102647783]
We propose an end-to-end framework, named DiffBEV, to exploit the potential of diffusion model to generate a more comprehensive BEV representation.
In practice, we design three types of conditions to guide the training of the diffusion model which denoises the coarse samples and refines the semantic feature.
We show that DiffBEV achieves a 25.9% mIoU on the nuScenes dataset, which is 6.2% higher than the best-performing existing approach.
arXiv Detail & Related papers (2023-03-15T02:42:48Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
We present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems.
We show that the multi-task BEVerse outperforms single-task methods on 3D object detection, semantic map construction, and motion prediction.
arXiv Detail & Related papers (2022-05-19T17:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.