論文の概要: Learning Lane Graphs from Aerial Imagery Using Transformers
- arxiv url: http://arxiv.org/abs/2407.05687v1
- Date: Mon, 8 Jul 2024 07:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:40:17.396182
- Title: Learning Lane Graphs from Aerial Imagery Using Transformers
- Title(参考訳): 変圧器を用いた空中画像からのレーングラフの学習
- Authors: Martin Büchner, Simon Dorer, Abhinav Valada,
- Abstract要約: この研究は、航空画像から後継車線グラフを生成する新しいアプローチを導入している。
後継レーングラフを最大長経路の集合としてフレーム化し,検出変換器(DETR)アーキテクチャを用いてそれらを予測する。
本手法の有効性を多種多様な大規模UrbanLaneGraphデータセットの広範な実験により実証する。
- 参考スコア(独自算出の注目度): 7.718401895021425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The robust and safe operation of automated vehicles underscores the critical need for detailed and accurate topological maps. At the heart of this requirement is the construction of lane graphs, which provide essential information on lane connectivity, vital for navigating complex urban environments autonomously. While transformer-based models have been effective in creating map topologies from vehicle-mounted sensor data, their potential for generating such graphs from aerial imagery remains untapped. This work introduces a novel approach to generating successor lane graphs from aerial imagery, utilizing the advanced capabilities of transformer models. We frame successor lane graphs as a collection of maximal length paths and predict them using a Detection Transformer (DETR) architecture. We demonstrate the efficacy of our method through extensive experiments on the diverse and large-scale UrbanLaneGraph dataset, illustrating its accuracy in generating successor lane graphs and highlighting its potential for enhancing autonomous vehicle navigation in complex environments.
- Abstract(参考訳): 自動運転車の頑丈で安全な運転は、詳細な正確な地形図の必要性を浮き彫りにしている。
この要求の中心は、複雑な都市環境を自律的にナビゲートする上で不可欠な、車線接続に関する重要な情報を提供する車線グラフの構築である。
トランスフォーマーベースのモデルは、車両に搭載されたセンサーデータから地図トポロジを作成するのに有効であるが、そのようなグラフを空中画像から生成する可能性はまだ残っていない。
この研究は、トランスモデルの高度な機能を利用して、空中画像から後続車線グラフを生成する新しいアプローチを導入する。
後継レーングラフを最大長経路の集合としてフレーム化し,検出変換器(DETR)アーキテクチャを用いてそれらを予測する。
本手法の有効性を,多種多様な大規模UrbanLaneGraphデータセットの広範な実験により実証し,後継車線グラフの生成における精度と,複雑な環境下での自動運転車のナビゲーション向上の可能性を強調した。
関連論文リスト
- HydroVision: LiDAR-Guided Hydrometric Prediction with Vision Transformers and Hybrid Graph Learning [4.499833362998488]
水位予測は、水資源の管理、洪水予測、環境保護に不可欠である。
静的グラフ学習と動的グラフ学習を組み合わせたハイブリッドグラフ学習構造を提案する。
提案手法は, 予測誤差を1日平均10%削減し, 予測地平線を延長する改良を行った。
論文 参考訳(メタデータ) (2024-09-23T16:57:43Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
マイクロレベルおよびマクロレベルの設計による包括的グラフトランスフォーマー検索空間を構築した。
EGTASはマクロレベルでのグラフトランスフォーマートポロジとマイクロレベルでのグラフ認識戦略を進化させる。
グラフレベルおよびノードレベルのタスクに対して,EGTASの有効性を示す。
論文 参考訳(メタデータ) (2024-05-30T07:44:31Z) - Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
本稿では,車載エゴセントリック画像のみをリアルタイムに利用して,長距離の地形標高マップを予測できる学習型アプローチを提案する。
複雑で非構造的な地形における自律型オフロードロボットナビゲーションへの提案手法の適用性を実験的に検証した。
論文 参考訳(メタデータ) (2024-01-30T22:37:24Z) - Automated Camera Calibration via Homography Estimation with GNNs [8.786192891436686]
政府や地方自治体は、道路の安全と交通条件の最適化のために、カメラから収集したデータにますます依存している。
カメラの正確な校正と自動校正を確実にすることが不可欠である。
本稿では,交差点のトポロジ的構造を利用して,この課題に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-05T08:45:26Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
単眼カメラ画像からレーングラフをオンラインに推定する。
前者は、トランスフォーマーベースのWasserstein Autoencoderを通じてデータセットから抽出される。
オートエンコーダは、最初のレーングラフ推定を強化するために使用される。
論文 参考訳(メタデータ) (2023-07-25T08:58:26Z) - Video Killed the HD-Map: Predicting Multi-Agent Behavior Directly From
Aerial Images [14.689298253430568]
本稿では,最小限のアノテーションを必要とする航空画像ベースマップ(AIM)の表現を提案し,歩行者や車両などの交通機関に道路状況情報を提供する。
以上の結果から,特にAIM表現を用いた歩行者の競合的マルチエージェント軌道予測性能が示された。
論文 参考訳(メタデータ) (2023-05-19T17:48:01Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - Transformer for Graphs: An Overview from Architecture Perspective [86.3545861392215]
グラフのために既存のTransformerモデルを分類し、様々なグラフタスクでそれらの効果を体系的に研究することが不可欠です。
まず、既存のモデルを分解し、バニラ変換器にグラフ情報を組み込む典型的な3つの方法を結論付けます。
本実験は,Transformerにおける現在のグラフ固有のモジュールの利点を確認し,異なる種類のグラフタスクにおけるそれらの利点を明らかにする。
論文 参考訳(メタデータ) (2022-02-17T06:02:06Z) - RNGDet: Road Network Graph Detection by Transformer in Aerial Images [19.141279413414082]
道路ネットワークグラフは、自動運転車アプリケーションにとって重要な情報を提供する。
手動でアノテートする道路ネットワークグラフは非効率で労働集約的です。
RNGDetという変圧器と模倣学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T01:59:41Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
生の地図データからレーングラフを構築し,地図構造を保存する。
我々は,アクター・トゥ・レーン,レーン・トゥ・レーン,レーン・トゥ・アクター,アクター・トゥ・アクターの4種類のインタラクションからなる融合ネットワークを利用する。
提案手法は,大規模Argoverse運動予測ベンチマークにおいて,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-27T17:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。