Learning Lane Graphs from Aerial Imagery Using Transformers
- URL: http://arxiv.org/abs/2407.05687v1
- Date: Mon, 8 Jul 2024 07:42:32 GMT
- Title: Learning Lane Graphs from Aerial Imagery Using Transformers
- Authors: Martin Büchner, Simon Dorer, Abhinav Valada,
- Abstract summary: This work introduces a novel approach to generating successor lane graphs from aerial imagery.
We frame successor lane graphs as a collection of maximal length paths and predict them using a Detection Transformer (DETR) architecture.
We demonstrate the efficacy of our method through extensive experiments on the diverse and large-scale UrbanLaneGraph dataset.
- Score: 7.718401895021425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The robust and safe operation of automated vehicles underscores the critical need for detailed and accurate topological maps. At the heart of this requirement is the construction of lane graphs, which provide essential information on lane connectivity, vital for navigating complex urban environments autonomously. While transformer-based models have been effective in creating map topologies from vehicle-mounted sensor data, their potential for generating such graphs from aerial imagery remains untapped. This work introduces a novel approach to generating successor lane graphs from aerial imagery, utilizing the advanced capabilities of transformer models. We frame successor lane graphs as a collection of maximal length paths and predict them using a Detection Transformer (DETR) architecture. We demonstrate the efficacy of our method through extensive experiments on the diverse and large-scale UrbanLaneGraph dataset, illustrating its accuracy in generating successor lane graphs and highlighting its potential for enhancing autonomous vehicle navigation in complex environments.
Related papers
- HydroVision: LiDAR-Guided Hydrometric Prediction with Vision Transformers and Hybrid Graph Learning [4.499833362998488]
Hydrometric forecasting is crucial for managing water resources, flood prediction, and environmental protection.
We propose a hybrid graph learning structure that combines static and dynamic graph learning.
Our method significantly reduces prediction error by an average of 10% across all days, with greater improvements for longer forecasting horizons.
arXiv Detail & Related papers (2024-09-23T16:57:43Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
We build a comprehensive graph Transformer search space with the micro-level and macro-level designs.
EGTAS evolves graph Transformer topologies at the macro level and graph-aware strategies at the micro level.
We demonstrate the efficacy of EGTAS across a range of graph-level and node-level tasks.
arXiv Detail & Related papers (2024-05-30T07:44:31Z) - Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation [10.898724668444125]
We present a learning-based approach capable of predicting terrain elevation maps at long-range using only onboard egocentric images in real-time.
We experimentally validate the applicability of our proposed approach for autonomous offroad robotic navigation in complex and unstructured terrain.
arXiv Detail & Related papers (2024-01-30T22:37:24Z) - Automated Camera Calibration via Homography Estimation with GNNs [8.786192891436686]
Governments and local administrations are increasingly relying on the data collected from cameras to enhance road safety and optimize traffic conditions.
It is imperative to ensure accurate and automated calibration of the involved cameras.
This paper proposes a novel approach to address this challenge by leveraging the topological structure of intersections.
arXiv Detail & Related papers (2023-11-05T08:45:26Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
Fine-tuning is resource-intensive and requires storing multiple copies of large models.
We propose a novel approach called deep graph prompt tuning as an alternative to fine-tuning.
By freezing the pre-trained parameters and only updating the added tokens, our approach reduces the number of free parameters and eliminates the need for multiple model copies.
arXiv Detail & Related papers (2023-09-18T20:12:17Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
We tackle online estimation of the lane graph from a single onboard camera image.
The prior is extracted from the dataset through a transformer based Wasserstein Autoencoder.
The autoencoder is then used to enhance the initial lane graph estimates.
arXiv Detail & Related papers (2023-07-25T08:58:26Z) - Video Killed the HD-Map: Predicting Multi-Agent Behavior Directly From
Aerial Images [14.689298253430568]
We propose an aerial image-based map (AIM) representation that requires minimal annotation and provides rich road context information for traffic agents like pedestrians and vehicles.
Our results demonstrate competitive multi-agent trajectory prediction performance especially for pedestrians in the scene when using our AIM representation.
arXiv Detail & Related papers (2023-05-19T17:48:01Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
Bird's-Eye View (BEV) Perception has received increasing attention in recent years.
Data-driven simulation for autonomous driving has been a focal point of recent research.
We propose BEVGen, a conditional generative model that synthesizes realistic and spatially consistent surrounding images.
arXiv Detail & Related papers (2023-01-11T18:39:34Z) - Transformer for Graphs: An Overview from Architecture Perspective [86.3545861392215]
It's imperative to sort out the existing Transformer models for graphs and systematically investigate their effectiveness on various graph tasks.
We first disassemble the existing models and conclude three typical ways to incorporate the graph information into the vanilla Transformer.
Our experiments confirm the benefits of current graph-specific modules on Transformer and reveal their advantages on different kinds of graph tasks.
arXiv Detail & Related papers (2022-02-17T06:02:06Z) - RNGDet: Road Network Graph Detection by Transformer in Aerial Images [19.141279413414082]
Road network graphs provide critical information for autonomous vehicle applications.
manually annotating road network graphs is inefficient and labor-intensive.
We propose a novel approach based on transformer and imitation learning named RNGDet.
arXiv Detail & Related papers (2022-02-16T01:59:41Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
We construct a lane graph from raw map data to preserve the map structure.
We exploit a fusion network consisting of four types of interactions, actor-to-lane, lane-to-lane, lane-to-actor and actor-to-actor.
Our approach significantly outperforms the state-of-the-art on the large scale Argoverse motion forecasting benchmark.
arXiv Detail & Related papers (2020-07-27T17:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.