論文の概要: A Factuality and Diversity Reconciled Decoding Method for Knowledge-Grounded Dialogue Generation
- arxiv url: http://arxiv.org/abs/2407.05718v1
- Date: Mon, 8 Jul 2024 08:23:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:30:32.512627
- Title: A Factuality and Diversity Reconciled Decoding Method for Knowledge-Grounded Dialogue Generation
- Title(参考訳): 知識を包含した対話生成のための現実性と多様性を考慮した復号法
- Authors: Chenxu Yang, Zheng Lin, Chong Tian, Liang Pang, Lanrui Wang, Zhengyang Tong, Qirong Ho, Yanan Cao, Weiping Wang,
- Abstract要約: 外部知識の接地は対話生成における応答の事実性を高めることができる。
DoGeと呼ばれる新しい手法が提案されている。
広く使われている3つのデータセットに対する大規模な実験は、DoGeが応答の多様性を向上するだけでなく、事実性も維持できることを示している。
- 参考スコア(独自算出の注目度): 32.74507273419422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grounding external knowledge can enhance the factuality of responses in dialogue generation. However, excessive emphasis on it might result in the lack of engaging and diverse expressions. Through the introduction of randomness in sampling, current approaches can increase the diversity. Nevertheless, such sampling method could undermine the factuality in dialogue generation. In this study, to discover a solution for advancing creativity without relying on questionable randomness and to subtly reconcile the factuality and diversity within the source-grounded paradigm, a novel method named DoGe is proposed. DoGe can dynamically alternate between the utilization of internal parameter knowledge and external source knowledge based on the model's factual confidence. Extensive experiments on three widely-used datasets show that DoGe can not only enhance response diversity but also maintain factuality, and it significantly surpasses other various decoding strategy baselines.
- Abstract(参考訳): 外部知識の接地は対話生成における応答の事実性を高めることができる。
しかし、過度に強調すると、エンゲージメントと多彩な表現が欠如する可能性がある。
サンプリングにおけるランダム性の導入により、現在のアプローチは多様性を高めることができる。
それでも、このようなサンプリング手法は対話生成の事実性を損なう可能性がある。
本研究では,疑わしいランダム性に頼らずに創造性を向上させるための解決策を見出すとともに,原点的パラダイムにおける事実と多様性を微調整するために,DoGeという新しい手法を提案する。
DoGeは、モデルの実的信頼度に基づいて、内部パラメータ知識と外部ソース知識の活用を動的に交互に行うことができる。
広く使われている3つのデータセットに対する大規模な実験により、DoGeは応答の多様性を高めるだけでなく、事実性も維持でき、他の様々なデコード戦略ベースラインをはるかに上回っている。
関連論文リスト
- Independence Constrained Disentangled Representation Learning from Epistemological Perspective [13.51102815877287]
Disentangled Representation Learningは、データ生成プロセスにおいて意味論的に意味のある潜伏変数を識別するデータエンコーダをトレーニングすることで、ディープラーニングメソッドの説明可能性を向上させることを目的としている。
不整合表現学習の目的については合意が得られない。
本稿では,相互情報制約と独立性制約を統合した非絡み合い表現学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:00:59Z) - Diversify Question Generation with Retrieval-Augmented Style Transfer [68.00794669873196]
本稿では,検索型スタイル転送のためのフレームワーク RAST を提案する。
本研究の目的は,多様なテンプレートのスタイルを質問生成に活用することである。
多様性報酬と一貫性報酬の重み付けを最大化する新しい強化学習(RL)ベースのアプローチを開発する。
論文 参考訳(メタデータ) (2023-10-23T02:27:31Z) - Diverse and Faithful Knowledge-Grounded Dialogue Generation via
Sequential Posterior Inference [82.28542500317445]
本稿では,知識の選択と対話生成が可能な,逐次後推論(Sequential Posterior Inference, SPI)と呼ばれるエンドツーエンド学習フレームワークを提案する。
他の方法とは異なり、SPIは推論ネットワークを必要とせず、後部分布の単純な幾何学を仮定する。
論文 参考訳(メタデータ) (2023-06-01T21:23:13Z) - Semantic Diversity in Dialogue with Natural Language Inference [19.74618235525502]
本稿では,対話生成における多様性向上に2つの重要な貢献をする。
まず、自然言語推論(NLI)を用いて、会話に対するモデル応答の集合のセマンティック多様性を測定する新しいメトリクスを提案する。
第2に,多様性閾値生成と呼ばれる新世代の手法を用いて,サンプル化された応答集合のセマンティック多様性を反復的に改善する方法を実証する。
論文 参考訳(メタデータ) (2022-05-03T13:56:32Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
我々は、OK-VQAのオープンドメインマルチモーダルタスクにおいて、最先端の強力な結果をもたらす新しいモデルである知識拡張トランスフォーマー(KAT)を提案する。
提案手法は,エンド・ツー・エンドのエンコーダ・デコーダアーキテクチャにおいて暗黙的かつ明示的な知識を統合しつつ,回答生成時に両知識源を共同で推論する。
我々の分析では、モデル予測の解釈可能性の向上に、明示的な知識統合のさらなる利点が見られる。
論文 参考訳(メタデータ) (2021-12-16T04:37:10Z) - Knowledge-Grounded Dialogue Generation with a Unified Knowledge
Representation [78.85622982191522]
既存のシステムは、トレーニングデータでカバーされる限られたトピックのために、目に見えないトピックでうまく機能しない。
本稿では,異なる知識源を均質化した言語モデルであるPLUGについて述べる。
完全に教師された設定の下で最先端のメソッドと同等のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-12-15T07:11:02Z) - Zero-Resource Knowledge-Grounded Dialogue Generation [29.357221039484568]
本稿では,文脈と応答をブリッジする知識と,その知識を潜在変数として表現する方法を提案する。
また,本モデルでは,知識基盤の対話に頼っている最先端の手法と同等の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-08-29T05:48:32Z) - Informed Sampling for Diversity in Concept-to-Text NLG [8.883733362171034]
本稿では,言語生成モデルが確実に生成できる多様性のレベルを探索するために,Imitation Learningアプローチを提案する。
具体的には、任意のタイミングでどの単語が高品質な出力につながるかを識別するように訓練されたメタ分類器を用いて復号処理を強化する。
論文 参考訳(メタデータ) (2020-04-29T17:43:24Z) - Sequential Latent Knowledge Selection for Knowledge-Grounded Dialogue [51.513276162736844]
この問題に対する最初のアプローチとして,逐次潜在変数モデルを提案する。
シーケンシャル・ナレッジ・トランスフォーマー (SKT) という名前のモデルは、知識よりも先行と後続の分布を追跡することができる。
論文 参考訳(メタデータ) (2020-02-18T11:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。