An efficient method to automate tooth identification and 3D bounding box extraction from Cone Beam CT Images
- URL: http://arxiv.org/abs/2407.05892v2
- Date: Wed, 10 Jul 2024 09:44:17 GMT
- Title: An efficient method to automate tooth identification and 3D bounding box extraction from Cone Beam CT Images
- Authors: Ignacio Garrido Botella, Ignacio Arranz Águeda, Juan Carlos Armenteros Carmona, Oleg Vorontsov, Fernando Bayón Robledo, Evgeny Solovykh, Obrubov Aleksandr Andreevich, Adrián Alonso Barriuso,
- Abstract summary: This paper proposes a method for automatically detecting, identifying, and extracting teeth from CBCT images.
Teeth are pinpointed and labeled using a single-stage object detector.
Broom boxes are delineated and identified to create three-dimensional representations of each tooth.
- Score: 33.7054351451505
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate identification, localization, and segregation of teeth from Cone Beam Computed Tomography (CBCT) images are essential for analyzing dental pathologies. Modeling an individual tooth can be challenging and intricate to accomplish, especially when fillings and other restorations introduce artifacts. This paper proposes a method for automatically detecting, identifying, and extracting teeth from CBCT images. Our approach involves dividing the three-dimensional images into axial slices for image detection. Teeth are pinpointed and labeled using a single-stage object detector. Subsequently, bounding boxes are delineated and identified to create three-dimensional representations of each tooth. The proposed solution has been successfully integrated into the dental analysis tool Dentomo.
Related papers
- A Multi-Stage Framework for 3D Individual Tooth Segmentation in Dental CBCT [7.6057981800052845]
Cone beam computed tomography (CBCT) is a common way of diagnosing dental diseases.
Deep learning based methods have achieved convincing results in medical image processing.
We propose a multi-stage framework for 3D tooth related generalization in dental CBCT.
arXiv Detail & Related papers (2024-07-15T04:23:28Z) - 3D Structure-guided Network for Tooth Alignment in 2D Photograph [47.51314162367702]
A 2D photograph depicting aligned teeth prior to orthodontic treatment is crucial for effective dentist-patient communication.
We propose a 3D structure-guided tooth alignment network that takes 2D photographs as input and aligns the teeth within the 2D image space.
We evaluate our network on various facial photographs, demonstrating its exceptional performance and strong applicability within the orthodontic industry.
arXiv Detail & Related papers (2023-10-17T09:44:30Z) - Construction of unbiased dental template and parametric dental model for
precision digital dentistry [46.459289444783956]
We develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation.
A total of 159 CBCT images of real subjects are collected to perform the constructions.
arXiv Detail & Related papers (2023-04-07T09:39:03Z) - An Implicit Parametric Morphable Dental Model [79.29420177904022]
We present the first parametric 3D morphable dental model for both teeth and gum.
It is based on a component-wise representation for each tooth and the gum, together with a learnable latent code for each of such components.
Our reconstruction quality is on par with the most advanced global implicit representations while enabling novel applications.
arXiv Detail & Related papers (2022-11-21T12:23:54Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Metal Artifact Reduction with Intra-Oral Scan Data for 3D Low Dose
Maxillofacial CBCT Modeling [0.7444835592104696]
A two-stage metal artifact reduction method is proposed for accurate 3D low-dose maxillofacial CBCT modeling.
In the first stage, an image-to-image deep learning network is employed to mitigate metal-related artifacts.
In the second stage, a 3D maxillofacial model is constructed by segmenting the bones from the dental CBCT image corrected.
arXiv Detail & Related papers (2022-02-08T00:24:41Z) - Dense Representative Tooth Landmark/axis Detection Network on 3D Model [32.81858923141152]
We propose a deep learning approach with a labeled dataset by professional dentists to the tooth landmark/axis detection on tooth model.
Our method can extract not only tooth landmarks in the form of point (e.g. cusps) but also axes that measure the tooth angulation and inclination.
The proposed network takes as input a 3D tooth model and predicts various types of the tooth landmarks and axes.
arXiv Detail & Related papers (2021-11-08T00:42:22Z) - A fully automated method for 3D individual tooth identification and
segmentation in dental CBCT [1.567576360103422]
This paper proposes a fully automated method of identifying and segmenting 3D individual teeth from dental CBCT images.
The proposed method addresses the aforementioned difficulty by developing a deep learning-based hierarchical multi-step model.
Experimental results showed that the proposed method achieved an F1-score of 93.35% for tooth identification and a Dice similarity coefficient of 94.79% for individual 3D tooth segmentation.
arXiv Detail & Related papers (2021-02-11T15:07:23Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
Individual tooth segmentation from cone beam computed tomography (CBCT) images is essential for an anatomical understanding of orthodontic structures.
The presence of severe metal artifacts in CBCT images hinders the accurate segmentation of each individual tooth.
We propose a neural network for pixel-wise labeling to exploit an instance segmentation framework that is robust to metal artifacts.
arXiv Detail & Related papers (2020-02-06T07:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.