論文の概要: LPGD: A General Framework for Backpropagation through Embedded Optimization Layers
- arxiv url: http://arxiv.org/abs/2407.05920v1
- Date: Mon, 8 Jul 2024 13:27:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 15:40:39.079721
- Title: LPGD: A General Framework for Backpropagation through Embedded Optimization Layers
- Title(参考訳): LPGD: 組込み最適化レイヤによるバックプロパゲーションのための一般的なフレームワーク
- Authors: Anselm Paulus, Georg Martius, Vít Musil,
- Abstract要約: 組込み最適化層を用いてアーキテクチャをトレーニングするためのフレキシブルなフレームワークを提案する。
Lagrangian Proximal Gradient Descentは、退化層誘導体の有意義な置換を効率的に計算する。
本手法を理論的に解析し,LPGDが微分可能な設定であっても勾配降下よりも早く収束することを示す。
- 参考スコア(独自算出の注目度): 26.251442093195376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embedding parameterized optimization problems as layers into machine learning architectures serves as a powerful inductive bias. Training such architectures with stochastic gradient descent requires care, as degenerate derivatives of the embedded optimization problem often render the gradients uninformative. We propose Lagrangian Proximal Gradient Descent (LPGD) a flexible framework for training architectures with embedded optimization layers that seamlessly integrates into automatic differentiation libraries. LPGD efficiently computes meaningful replacements of the degenerate optimization layer derivatives by re-running the forward solver oracle on a perturbed input. LPGD captures various previously proposed methods as special cases, while fostering deep links to traditional optimization methods. We theoretically analyze our method and demonstrate on historical and synthetic data that LPGD converges faster than gradient descent even in a differentiable setup.
- Abstract(参考訳): 機械学習アーキテクチャにパラメータ化された最適化問題を層として埋め込むことは、強力な帰納バイアスとなる。
このようなアーキテクチャを確率的勾配降下で訓練するには注意が必要である。
自動微分ライブラリにシームレスに統合された組込み最適化層を持つアーキテクチャをトレーニングするためのフレキシブルなフレームワークとして,Lagrangian Proximal Gradient Descent (LPGD)を提案する。
LPGDは、摂動入力で前方ソルバオラクルを再実行することにより、退化最適化層誘導体の有意義な置換を効率的に計算する。
LPGDは、これまで提案されていた様々な手法を特別な事例として捉え、従来の最適化手法との深いつながりを育んでいる。
本手法を理論的に解析し,LPGDが微分可能な設定であっても勾配降下よりも早く収束することを示す。
関連論文リスト
- $ψ$DAG: Projected Stochastic Approximation Iteration for DAG Structure Learning [6.612096312467342]
Directed A Graphs (DAGs) の構造を学ぶことは、ノード数に応じてスケールする可能なグラフの巨大な検索空間のため、大きな課題となる。
近年の進歩は、微分可能指数関数性制約を取り入れた連続最適化タスクとしてこの問題を再定義している。
本稿では,SGD(Gradient Descent)に基づく最適化手法と統合した近似手法を用いて,DAGを学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T12:13:11Z) - Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
ゼロ階数(ZO)アルゴリズムは、関数値の有限差を用いて勾配を近似することで、有望な代替手段を提供する。
既存のZO法は、LLM微調整で一般的な低ランク勾配構造を捉えるのに苦労し、準最適性能をもたらす。
本稿では,LLMにおけるこの構造を効果的に捕捉する低ランクZOアルゴリズム(LOZO)を提案する。
論文 参考訳(メタデータ) (2024-10-10T08:10:53Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Gradient-free neural topology optimization [0.0]
勾配のないアルゴリズムは勾配に基づくアルゴリズムと比較して多くの繰り返しを収束させる必要がある。
これにより、反復1回あたりの計算コストとこれらの問題の高次元性のため、トポロジ最適化では実現不可能となった。
我々は,潜時空間における設計を最適化する場合に,少なくとも1桁の繰り返し回数の減少につながる事前学習型ニューラルリパラメータ化戦略を提案する。
論文 参考訳(メタデータ) (2024-03-07T23:00:49Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
微分可能なArchiTecture Search(DARTS)は先日,ニューラルアーキテクチャサーチ(NAS)の主流になった。
暗黙の関数定理に基づいてDARTSの過次計算に取り組む。
提案手法であるiDARTSのアーキテクチャ最適化は,定常点に収束することが期待される。
論文 参考訳(メタデータ) (2021-06-21T00:44:11Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
有限差分で任意の順序方向微分を効率的に近似する汎用戦略を提案する。
我々の近似は関数評価にのみ関係しており、これは並列で実行でき、勾配計算は行わない。
論文 参考訳(メタデータ) (2020-07-07T10:05:01Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。