MTL-Split: Multi-Task Learning for Edge Devices using Split Computing
- URL: http://arxiv.org/abs/2407.05982v1
- Date: Mon, 8 Jul 2024 14:25:39 GMT
- Title: MTL-Split: Multi-Task Learning for Edge Devices using Split Computing
- Authors: Luigi Capogrosso, Enrico Fraccaroli, Samarjit Chakraborty, Franco Fummi, Marco Cristani,
- Abstract summary: Split Computing (SC) is where a Deep Neural Network (DNN) is intelligently split with a part of it deployed on an edge device and the rest on a remote server.
This paper studies this problem, and MTL-Split, our novel proposed architecture, shows encouraging results on both synthetic and real-world data.
- Score: 11.357748232689628
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Split Computing (SC), where a Deep Neural Network (DNN) is intelligently split with a part of it deployed on an edge device and the rest on a remote server is emerging as a promising approach. It allows the power of DNNs to be leveraged for latency-sensitive applications that do not allow the entire DNN to be deployed remotely, while not having sufficient computation bandwidth available locally. In many such embedded systems scenarios, such as those in the automotive domain, computational resource constraints also necessitate Multi-Task Learning (MTL), where the same DNN is used for multiple inference tasks instead of having dedicated DNNs for each task, which would need more computing bandwidth. However, how to partition such a multi-tasking DNN to be deployed within a SC framework has not been sufficiently studied. This paper studies this problem, and MTL-Split, our novel proposed architecture, shows encouraging results on both synthetic and real-world data. The source code is available at https://github.com/intelligolabs/MTL-Split.
Related papers
- MatchNAS: Optimizing Edge AI in Sparse-Label Data Contexts via
Automating Deep Neural Network Porting for Mobile Deployment [54.77943671991863]
MatchNAS is a novel scheme for porting Deep Neural Networks to mobile devices.
We optimise a large network family using both labelled and unlabelled data.
We then automatically search for tailored networks for different hardware platforms.
arXiv Detail & Related papers (2024-02-21T04:43:12Z) - Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse
Multi-DNN Workloads [65.47816359465155]
Running multiple deep neural networks (DNNs) in parallel has become an emerging workload in both edge devices.
We propose Dysta, a novel scheduler that utilizes both static sparsity patterns and dynamic sparsity information for the sparse multi-DNN scheduling.
Our proposed approach outperforms the state-of-the-art methods with up to 10% decrease in latency constraint violation rate and nearly 4X reduction in average normalized turnaround time.
arXiv Detail & Related papers (2023-10-17T09:25:17Z) - DiviML: A Module-based Heuristic for Mapping Neural Networks onto
Heterogeneous Platforms [5.970091958678456]
We develop an approach for compiler-level partitioning of deep neural networks (DNNs) onto multiple interconnected hardware devices.
Our scheduler integrates both an exact solver, through a mixed integer linear programming (MILP) formulation, and a modularity-based runtime.
We show how we can extend our framework to schedule large language models across multiple heterogeneous servers.
arXiv Detail & Related papers (2023-07-31T19:46:49Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
We propose a single CNN architecture equipped with continuous convolutional kernels for tasks on arbitrary resolution, dimensionality and length without structural changes.
We show the generality of our approach by applying the same CCNN to a wide set of tasks on sequential (1$mathrmD$) and visual data (2$mathrmD$)
Our CCNN performs competitively and often outperforms the current state-of-the-art across all tasks considered.
arXiv Detail & Related papers (2022-06-07T15:48:02Z) - Decentralized Low-Latency Collaborative Inference via Ensembles on the
Edge [28.61344039233783]
We propose to facilitate the application of deep neural networks (DNNs) on the edge by allowing multiple users to collaborate during inference to improve their accuracy.
Our mechanism, coined em edge ensembles, is based on having diverse predictors at each device, which form an ensemble of models during inference.
We analyze the latency induced by edge ensembles, showing that its performance improvement comes at the cost of a minor additional delay under common assumptions on the communication network.
arXiv Detail & Related papers (2022-06-07T10:24:20Z) - Dynamic Split Computing for Efficient Deep Edge Intelligence [78.4233915447056]
We introduce dynamic split computing, where the optimal split location is dynamically selected based on the state of the communication channel.
We show that dynamic split computing achieves faster inference in edge computing environments where the data rate and server load vary over time.
arXiv Detail & Related papers (2022-05-23T12:35:18Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Dynamic DNN Decomposition for Lossless Synergistic Inference [0.9549013615433989]
Deep neural networks (DNNs) sustain high performance in today's data processing applications.
We propose D3, a dynamic DNN decomposition system for synergistic inference without precision loss.
D3 outperforms the state-of-the-art counterparts up to 3.4 times in end-to-end DNN inference time and reduces backbone network communication overhead up to 3.68 times.
arXiv Detail & Related papers (2021-01-15T03:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.