Systematic time-coarse graining for driven quantum systems
- URL: http://arxiv.org/abs/2407.06068v1
- Date: Mon, 8 Jul 2024 16:11:52 GMT
- Title: Systematic time-coarse graining for driven quantum systems
- Authors: Leon Bello, Wentao Fan, Aditya Gandotra, Hakan E. Türeci,
- Abstract summary: We present a time-coarse graining (STCG) framework that provides a Quantum Master Equation (QME) for the time-coarse grained density matrix of a driven quantum system.
We present three case studies examining the numerical stability, convergence and the interpretive utility of the coarse-grained QME at high orders.
- Score: 7.217684156614636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fidelity requirements on quantum devices necessitate faster and stronger drives, pushing into regimes where the rotating-wave approximation (RWA) is no longer adequate. In those regimes, high-frequency processes generated by counter-rotating terms can significantly modify the long-term dynamics of a quantum system. Exploring these regimes is difficult even numerically, since system dynamics exhibiting disparate time-scales are often stiff and unstable. In this work, we present a systematic time-coarse graining (STCG) framework that addresses these issues by directly providing a Quantum Master Equation (QME) for the time-coarse grained density matrix of a driven quantum system. STCG allows the perturbative calculation of effective unitary and non-unitary generators describing the relevant slow dynamics at any given order of truncation beyond the RWA, and is accompanied by a complete software framework written in Julia, \textbf{QuantumGraining.jl}, for efficient implementation. We present three case studies examining the numerical stability, convergence and the interpretive utility of the coarse-grained QME at high orders. These examples illustrate two key results: observables measured by finite bandwidth apparatus can differ significantly from exact dynamics due to the effect of the counter-rotating terms, and that this can be captured by solving the STCG QME with basic low-order ODE solvers.
Related papers
- Generative System Dynamics in Recurrent Neural Networks [56.958984970518564]
We investigate the continuous time dynamics of Recurrent Neural Networks (RNNs)
We show that skew-symmetric weight matrices are fundamental to enable stable limit cycles in both linear and nonlinear configurations.
Numerical simulations showcase how nonlinear activation functions not only maintain limit cycles, but also enhance the numerical stability of the system integration process.
arXiv Detail & Related papers (2025-04-16T10:39:43Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Floquet-engineered nonlinearities and controllable pair-hopping
processes: From optical Kerr cavities to correlated quantum matter [0.0]
This work explores the possibility of creating and controlling unconventional nonlinearities by periodic driving.
By means of a parent quantum many-body description, we demonstrate that such driven systems are well captured by an effective NLSE.
We analyze these intriguing properties both in the weakly-interacting (mean-field) regime, captured by the effective NLSE, and in the strongly-correlated quantum regime.
arXiv Detail & Related papers (2023-04-12T13:56:27Z) - Prethermalization in periodically-driven nonreciprocal many-body spin
systems [0.0]
We analyze a new class of time-periodic nonreciprocal dynamics in interacting chaotic classical spin systems.
We find that the magnetization dynamics features a long-lived metastable plateau, whose duration is controlled by the fourth power of the drive frequency.
We extend the notion of prethermal dynamics, observed in the high-frequency limit of periodically-driven systems, to nonreciprocal systems.
arXiv Detail & Related papers (2022-08-18T18:00:15Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Onset of non-Gaussian quantum physics in pulsed squeezing with
mesoscopic fields [1.2252572522254723]
We study the emergence of non-Gaussian quantum features in pulsed squeezed light generation with a mesoscopic number of pump photons.
We argue that the state of the art in nonlinear nanophotonics is quickly approaching this regime.
arXiv Detail & Related papers (2021-11-27T02:49:10Z) - Nonlinear interferometry beyond classical limit facilitated by cyclic
dynamics [18.236929748580867]
We present an approach that is broadly applicable to cyclic systems for implementing nonlinear interferometry without invoking time reversal.
We implement such a 'closed-loop' nonlinear interferometer and achieve a metrological gain of $3.87_-0.95+0.91$ decibels over the classical limit for a total of 26500 atoms.
arXiv Detail & Related papers (2021-11-01T09:41:34Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.