From Loops to Oops: Fallback Behaviors of Language Models Under Uncertainty
- URL: http://arxiv.org/abs/2407.06071v1
- Date: Mon, 8 Jul 2024 16:13:42 GMT
- Title: From Loops to Oops: Fallback Behaviors of Language Models Under Uncertainty
- Authors: Maor Ivgi, Ori Yoran, Jonathan Berant, Mor Geva,
- Abstract summary: Large language models (LLMs) often exhibit undesirable behaviors, such as hallucinations and sequence repetitions.
We categorize fallback behaviors -- sequence repetitions, degenerate text, and hallucinations -- and extensively analyze them.
Our experiments reveal a clear and consistent ordering of fallback behaviors, across all these axes.
- Score: 67.81977289444677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) often exhibit undesirable behaviors, such as hallucinations and sequence repetitions. We propose to view these behaviors as fallbacks that models exhibit under uncertainty, and investigate the connection between them. We categorize fallback behaviors -- sequence repetitions, degenerate text, and hallucinations -- and extensively analyze them in models from the same family that differ by the amount of pretraining tokens, parameter count, or the inclusion of instruction-following training. Our experiments reveal a clear and consistent ordering of fallback behaviors, across all these axes: the more advanced an LLM is (i.e., trained on more tokens, has more parameters, or instruction-tuned), its fallback behavior shifts from sequence repetitions, to degenerate text, and then to hallucinations. Moreover, the same ordering is observed throughout a single generation, even for the best-performing models; as uncertainty increases, models shift from generating hallucinations to producing degenerate text and then sequence repetitions. Lastly, we demonstrate that while common decoding techniques, such as random sampling, might alleviate some unwanted behaviors like sequence repetitions, they increase harder-to-detect hallucinations.
Related papers
- Hallucination Detection for Grounded Instruction Generation [8.432152982202785]
A major issue with current models is hallucination.
We develop a model that detects these hallucinations by adopting a model pre-trained on a large corpus of image-text pairs.
arXiv Detail & Related papers (2023-10-23T19:36:28Z) - Mitigating the Learning Bias towards Repetition by Self-Contrastive
Training for Open-Ended Generation [92.42032403795879]
We show that pretrained language models (LMs) such as GPT2 still tend to generate repetitive texts.
We attribute their overestimation of token-level repetition probabilities to the learning bias.
We find that LMs use longer-range dependencies to predict repetitive tokens than non-repetitive ones, which may be the cause of sentence-level repetition loops.
arXiv Detail & Related papers (2023-07-04T07:53:55Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
We find a simple criterion under which models are significantly more likely to assign more probability to hallucinated content during generation: high model uncertainty.
This finding offers a potential explanation for hallucinations: models default to favoring text with high marginal probability, when uncertain about a continuation.
We propose a decoding strategy that switches to optimizing for pointwise mutual information of the source and target token--rather than purely the probability of the target token--when the model exhibits uncertainty.
arXiv Detail & Related papers (2022-10-24T13:30:54Z) - Can a Transformer Pass the Wug Test? Tuning Copying Bias in Neural
Morphological Inflection Models [9.95909045828344]
We show that, to be more effective, the hallucination process needs to pay attention to syllable-like length rather than individual characters or stems.
We report a significant performance improvement with our hallucination model over previous data hallucination methods when training and test data do not overlap in their lemmata.
arXiv Detail & Related papers (2021-04-13T19:51:21Z) - On Hallucination and Predictive Uncertainty in Conditional Language
Generation [76.18783678114325]
Higher predictive uncertainty corresponds to a higher chance of hallucination.
Epistemic uncertainty is more indicative of hallucination than aleatoric or total uncertainties.
It helps to achieve better results of trading performance in standard metric for less hallucination with the proposed beam search variant.
arXiv Detail & Related papers (2021-03-28T00:32:27Z) - Consistency of a Recurrent Language Model With Respect to Incomplete
Decoding [67.54760086239514]
We study the issue of receiving infinite-length sequences from a recurrent language model.
We propose two remedies which address inconsistency: consistent variants of top-k and nucleus sampling, and a self-terminating recurrent language model.
arXiv Detail & Related papers (2020-02-06T19:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.