On Hallucination and Predictive Uncertainty in Conditional Language
Generation
- URL: http://arxiv.org/abs/2103.15025v1
- Date: Sun, 28 Mar 2021 00:32:27 GMT
- Title: On Hallucination and Predictive Uncertainty in Conditional Language
Generation
- Authors: Yijun Xiao, William Yang Wang
- Abstract summary: Higher predictive uncertainty corresponds to a higher chance of hallucination.
Epistemic uncertainty is more indicative of hallucination than aleatoric or total uncertainties.
It helps to achieve better results of trading performance in standard metric for less hallucination with the proposed beam search variant.
- Score: 76.18783678114325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite improvements in performances on different natural language generation
tasks, deep neural models are prone to hallucinating facts that are incorrect
or nonexistent. Different hypotheses are proposed and examined separately for
different tasks, but no systematic explanations are available across these
tasks. In this study, we draw connections between hallucinations and predictive
uncertainty in conditional language generation. We investigate their
relationship in both image captioning and data-to-text generation and propose a
simple extension to beam search to reduce hallucination. Our analysis shows
that higher predictive uncertainty corresponds to a higher chance of
hallucination. Epistemic uncertainty is more indicative of hallucination than
aleatoric or total uncertainties. It helps to achieve better results of trading
performance in standard metric for less hallucination with the proposed beam
search variant.
Related papers
- Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models [65.32990889402927]
We coin this phenomenon as knowledge overshadowing''
We show that the hallucination rate grows with both the imbalance ratio and the length of dominant condition description.
We propose to utilize overshadowing conditions as a signal to catch hallucination before it is produced.
arXiv Detail & Related papers (2024-07-10T20:37:42Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
Large language models are successful in answering factoid questions but are also prone to hallucination.
We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics.
Our study shed light on understanding the reasons for LLMs' hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
arXiv Detail & Related papers (2024-03-29T06:48:30Z) - In-Context Sharpness as Alerts: An Inner Representation Perspective for
Hallucination Mitigation [36.31646727970656]
Large language models (LLMs) frequently hallucinate and produce factual errors.
correct generations tend to have sharper context activations in the hidden states of the in-context tokens, compared to the incorrect ones.
We propose an entropy-based metric to quantify the sharpness'' among the in-context hidden states and incorporate it into the decoding process.
arXiv Detail & Related papers (2024-03-03T15:53:41Z) - Hallucinations in Neural Automatic Speech Recognition: Identifying
Errors and Hallucinatory Models [11.492702369437785]
Hallucinations are semantically unrelated to the source utterance, yet still fluent and coherent.
We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models.
We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency.
arXiv Detail & Related papers (2024-01-03T06:56:56Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Understanding and Detecting Hallucinations in Neural Machine Translation
via Model Introspection [28.445196622710164]
We first identify internal model symptoms of hallucinations by analyzing the relative token contributions to the generation in contrastive hallucinated vs. non-hallucinated outputs generated via source perturbations.
We then show that these symptoms are reliable indicators of natural hallucinations, by using them to design a lightweight hallucination detector.
arXiv Detail & Related papers (2023-01-18T20:43:13Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
We find a simple criterion under which models are significantly more likely to assign more probability to hallucinated content during generation: high model uncertainty.
This finding offers a potential explanation for hallucinations: models default to favoring text with high marginal probability, when uncertain about a continuation.
We propose a decoding strategy that switches to optimizing for pointwise mutual information of the source and target token--rather than purely the probability of the target token--when the model exhibits uncertainty.
arXiv Detail & Related papers (2022-10-24T13:30:54Z) - Inspecting the Factuality of Hallucinated Entities in Abstractive
Summarization [36.052622624166894]
State-of-the-art abstractive summarization systems often generate emphhallucinations; i.e., content that is not directly inferable from the source text.
We propose a novel detection approach that separates factual from non-factual hallucinations of entities.
arXiv Detail & Related papers (2021-08-30T15:40:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.