Dual approach to soft-core anyonic Lieb-Liniger fluids
- URL: http://arxiv.org/abs/2407.06108v1
- Date: Mon, 8 Jul 2024 16:46:24 GMT
- Title: Dual approach to soft-core anyonic Lieb-Liniger fluids
- Authors: Gerard ValentĂ-Rojas, Patrik Ă–hberg,
- Abstract summary: We study a one-dimensional interacting Bose gas in the presence of a gauge field.
Chiral solitons are recovered at a mean-field level.
Numerical calculations show the presence of both chiral soliton trains and shock waves.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The identity of quantum matter can be effectively altered by means of gauge fields. In two spatial dimensions this is illustrated by the Chern-Simons flux-attachment mechanism, but such a mechanism is not possible in lower dimensions. Here, we study a one-dimensional interacting Bose gas in the presence of a gauge field. This model can be explicitly mapped into an interacting anyonic system by a large gauge transformation, indicating a statistical transmutation analogous to that of Chern-Simons. The Bogoliubov spectrum in the weakly-interacting limit reveals the presence of a roton minimum arising from the statistical interaction. At a mean-field level chiral solitons are recovered. Should these be understood as quantum bound states, it is natural to interpret them as corresponding to localised anyonic quasiparticles. Hydrodynamic arguments highlight the presence of dispersive chiral shock waves in the propagation of a wavepacket due to a Riemann-Hopf nonlinearity. Numerical calculations show the presence of both chiral soliton trains and shock waves.
Related papers
- Exotic quantum liquids in Bose-Hubbard models with spatially-modulated
symmetries [0.0]
We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states.
We show that such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice.
We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.
arXiv Detail & Related papers (2023-07-17T18:14:54Z) - Dilaton-induced open quantum dynamics [0.0]
We study the open quantum dynamics of a probe modelled by another real scalar field.
As the leading effect, we extract a correction to the probe's unitary evolution.
We show that comparing the predicted frequency shifts in two experimentally distinct setups has the potential to exclude large parts of the dilaton parameter space.
arXiv Detail & Related papers (2023-06-19T12:49:59Z) - The Composite Particle Duality: A New Class of Topological Quantum Matter [0.0]
Composite particle duality extends notions of flux attachment and statistical transmutation in spacetime dimensions beyond 2+1D.
The immediate implication of the duality is that an interacting quantum system in arbitrary dimensions can experience a modification of its statistical properties if coupled to a certain gauge field.
arXiv Detail & Related papers (2023-06-01T15:46:49Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Exploring helical phases of matter in bosonic ladders [0.0]
Strongly correlated helical states are known to appear for specific ratios of the particle and magnetic flux densities.
We show that one of them can be accessed in systems with two-species hardcore bosons and on-site repulsions only.
arXiv Detail & Related papers (2020-10-06T14:09:16Z) - Localization of Rung Pairs in Hard-core Bose-Hubbard Ladder [13.46516066673]
We study the rung-pair localization of the Bose-Hubbard ladder model without quenched disorder.
In the hard-core limit, there exists a rung-pair localization both at the edges and in the bulk.
Our results reveal another interesting type of disorder-free localization related to a zero-energy flat band.
arXiv Detail & Related papers (2020-05-18T08:40:40Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.