論文の概要: Towards SAR Automatic Target Recognition MultiCategory SAR Image Classification Based on Light Weight Vision Transformer
- arxiv url: http://arxiv.org/abs/2407.06128v2
- Date: Tue, 9 Jul 2024 07:49:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:32:40.866250
- Title: Towards SAR Automatic Target Recognition MultiCategory SAR Image Classification Based on Light Weight Vision Transformer
- Title(参考訳): 軽量ビジョン変換器を用いたSAR自動目標認識マルチカテゴリSAR画像分類に向けて
- Authors: Guibin Zhao, Pengfei Li, Zhibo Zhang, Fusen Guo, Xueting Huang, Wei Xu, Jinyin Wang, Jianlong Chen,
- Abstract要約: 本稿では,SAR画像の分類に軽量な視覚変換器モデルを適用しようとする。
構造全体がオープンアクセスされたSARデータセットによって検証された。
- 参考スコア(独自算出の注目度): 11.983317593939688
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Synthetic Aperture Radar has been extensively used in numerous fields and can gather a wealth of information about the area of interest. This large scene data intensive technology puts a high value on automatic target recognition which can free the utilizers and boost the efficiency. Recent advances in artificial intelligence have made it possible to create a deep learning based SAR ATR that can automatically identify target features from massive input data. In the last 6 years, intensive research has been conducted in this area, however, most papers in the current SAR ATR field used recurrent neural network and convolutional neural network varied models to deepen the regime's understanding of the SAR images. To equip SAR ATR with updated deep learning technology, this paper tries to apply a lightweight vision transformer based model to classify SAR images. The entire structure was verified by an open-accessed SAR data set and recognition results show that the final classification outcomes are robust and more accurate in comparison with referred traditional network structures without even using any convolutional layers.
- Abstract(参考訳): 合成開口レーダーは多くの分野で広く使われており、関心領域に関する豊富な情報を集めることができる。
この大規模なシーンデータ集約技術は、利用者を解放し、効率を高めることができる自動目標認識に高い価値を与える。
人工知能の最近の進歩により、大量の入力データからターゲット特徴を自動的に識別できるディープラーニングベースのSAR ATRが作成できるようになった。
過去6年間、この領域で集中的な研究が行われてきたが、現在のSAR ATR分野のほとんどの論文では、SAR画像に対するレジームの理解を深めるために、リカレントニューラルネットワークと畳み込みニューラルネットワークを使用していた。
そこで本研究では,SAR画像の分類に軽量な視覚変換器モデルを適用した。
構造全体がオープンアクセスされたSARデータセットで検証され、最終的な分類結果が畳み込み層を使わずに参照される従来のネットワーク構造と比較して堅牢で精度が高いことが認識された。
関連論文リスト
- SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - Benchmarking Deep Learning Classifiers for SAR Automatic Target
Recognition [7.858656052565242]
本稿では,複数のSARデータセットを用いたSAR ATRの先進的な深層学習モデルを総合的にベンチマークする。
推論スループットと解析性能の観点から,分類精度のランタイム性能に関する5つの分類器の評価と比較を行った。
SAR ATRの領域では、すべてのモデルルールが疑わしいのです。
論文 参考訳(メタデータ) (2023-12-12T02:20:39Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
本稿では、転送学習技術とマルチヘッドアテンションスキームを活用した、深層学習に基づくRSISCフレームワークを提案する。
提案したディープラーニングフレームワークは、ベンチマークNWPU-RESISC45データセットに基づいて評価され、最高の分類精度94.7%を達成する。
論文 参考訳(メタデータ) (2022-06-20T10:05:38Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
SAR(Synthetic Aperture Radar)画像のターゲットの検出と認識は難しい問題である。
近年開発されたディープラーニングアルゴリズムは,SAR画像の固有の特徴を自動的に学習することができる。
本稿では,効率的かつ堅牢なディープラーニングに基づくターゲット検出手法を提案する。
論文 参考訳(メタデータ) (2022-01-22T03:25:24Z) - Learning class prototypes from Synthetic InSAR with Vision Transformers [2.41710192205034]
火山活動の早期の兆候の検出は、火山の危険を評価するために重要である。
本稿では,合成干渉図の豊富な情報源を利用した新しい深層学習手法を提案する。
本報告では, 火山変動検出技術に勝る検出精度について報告する。
論文 参考訳(メタデータ) (2022-01-09T14:03:00Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Visualization of Deep Transfer Learning In SAR Imagery [0.0]
eo shipデータセットでトレーニングされたネットワークの深い機能を活用するために、転送学習を検討する。
クラスアクティベーションマップの形でネットワークアクティベーションを調べることで、ディープネットワークが新しいモダリティをどのように解釈するかを知ることができます。
論文 参考訳(メタデータ) (2021-03-20T00:16:15Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。