論文の概要: What's Wrong with Your Code Generated by Large Language Models? An Extensive Study
- arxiv url: http://arxiv.org/abs/2407.06153v1
- Date: Mon, 8 Jul 2024 17:27:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 14:40:07.153509
- Title: What's Wrong with Your Code Generated by Large Language Models? An Extensive Study
- Title(参考訳): 大規模言語モデルで生成されたコードに何の誤りがあるのか?
- Authors: Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling Wu, Mingxu Chai, Jessica Fan, Caishuang Huang, Yunbo Tao, Yan Liu, Enyu Zhou, Ming Zhang, Yuhao Zhou, Yueming Wu, Rui Zheng, Ming Wen, Rongxiang Weng, Jingang Wang, Xunliang Cai, Tao Gui, Xipeng Qiu, Qi Zhang, Xuanjing Huang,
- Abstract要約: 大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
- 参考スコア(独自算出の注目度): 80.18342600996601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing development of large language models (LLMs) in code generation has drawn significant attention among researchers. To enhance LLM-based code generation ability, current efforts are predominantly directed towards collecting high-quality datasets and leveraging diverse training technologies. However, there is a notable lack of comprehensive studies examining the limitations and boundaries of these existing methods. To bridge this gap, we conducted an extensive empirical study evaluating the performance of three leading closed-source LLMs and four popular open-source LLMs on three commonly used benchmarks. Our investigation, which evaluated the length, cyclomatic complexity and API number of the generated code, revealed that these LLMs face challenges in generating successful code for more complex problems, and tend to produce code that is shorter yet more complicated as compared to canonical solutions. Additionally, we developed a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types. Furthermore, to better understand the performance of LLMs in real-world projects, we manually created a real-world benchmark comprising 140 code generation tasks. Our analysis highlights distinct differences in bug distributions between actual scenarios and existing benchmarks. Finally, we propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback. Experimental results demonstrate that our approach can significantly mitigate bugs and increase the passing rate by 29.2% after two iterations, indicating substantial potential for LLMs to handle more complex problems.
- Abstract(参考訳): コード生成における大規模言語モデル(LLM)の発展は、研究者の間で大きな注目を集めている。
LLMベースのコード生成能力を高めるため、現在の取り組みは主に高品質なデータセットを収集し、多様なトレーニング技術を活用することを目的としている。
しかし、これらの既存手法の限界と境界を概観する包括的研究の欠如が顕著である。
このギャップを埋めるために、我々は3つの主要なクローズドソース LLM と4つの人気のあるオープンソース LLM の性能を3つの一般的なベンチマークで評価した。
生成したコードの長さ,サイクロマティックな複雑さ,API番号を評価した調査の結果,これらのLLMは,より複雑な問題に対してコードを生成する上で難しい問題に直面しており,標準的なソリューションに比べて短いが,より複雑なコードを生成する傾向があることが明らかになった。
さらに、3つのカテゴリと12のサブカテゴリを含む間違ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析しました。
さらに,実世界のプロジェクトにおけるLLMの性能をよりよく理解するために,140のコード生成タスクからなる実世界のベンチマークを手作業で作成した。
我々の分析では、実際のシナリオと既存のベンチマークのバグの分布が異なる点を強調しています。
最後に, 自己批判を導入し, バグタイプやコンパイラフィードバックに基づいて, LLMのコードに対する批判と修正を可能にする, 新たな学習自由反復手法を提案する。
実験の結果,本手法は2回の反復でバグを著しく軽減し,通過率を29.2%向上させることで,LLMがより複雑な問題に対処できる可能性が示唆された。
関連論文リスト
- SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors [0.0]
大規模言語モデル(LLM)は、コード理解やコード生成など、コード関連のタスクにおいて顕著な機能を示している。
しかしながら、LLMが汎用的なサロゲートコードエグゼキュータとして機能するかどうかについても、同様に重要で未解明の疑問がある。
本研究は,LLMを代用コード実行子として使用することの実現可能性に関する実証的な知見を提供する。
論文 参考訳(メタデータ) (2025-02-16T15:38:19Z) - Guided Code Generation with LLMs: A Multi-Agent Framework for Complex Code Tasks [1.9198713957364215]
大規模言語モデル(LLM)は、コード生成タスクにおいて顕著な機能を示している。
複雑な、長いコンテキストプログラミングの課題に対処する上で、それらは重大な制限に直面します。
「案内コード生成のための新しいエージェント・フレームワーク」について紹介する。
論文 参考訳(メタデータ) (2025-01-11T19:21:53Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Bug In the Code Stack: Can LLMs Find Bugs in Large Python Code Stacks [1.3586572110652484]
本研究では,大規模文書から文脈情報を取得する上でのLLM(Large Language Models)の機能について検討する。
我々のベンチマークであるBug In The Code Stack (BICS)は、大規模なソースコード内の単純な構文バグを識別するLLMの能力を評価するために設計されている。
その結果,(1)検索タスクのテキストベースの環境に比べ,コードベースの環境の方が有意に困難であり,(2)異なるモデル間の性能差が大きく,(3)コンテキスト長と性能劣化との間には顕著な相関関係があることが判明した。
論文 参考訳(メタデータ) (2024-06-21T17:37:10Z) - Towards Understanding the Characteristics of Code Generation Errors Made by Large Language Models [10.519984835232359]
大規模言語モデル(LLM)はコード生成において前例のない機能を示している。
我々は,HumanEvalデータセット上の6つの代表的なLCMに対して,コード生成エラーの詳細な解析を行った。
LLMによるコード生成エラーの発見と修正には,いくつかの課題が浮かび上がっている。
論文 参考訳(メタデータ) (2024-06-13T01:29:52Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
算術的推論とコード生成という,2つの一般的な推論タスクに注目します。
i) 数学やコーディング問題に対する摂動の一般的なオントロジー, (ii) 摂動を応用するための半自動手法, (iii) 2つのデータセットを紹介する。
混乱した質問に対して、すべてのモデルで大幅なパフォーマンス低下を示します。
論文 参考訳(メタデータ) (2024-01-17T18:13:07Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
大規模言語モデル(LLM)ベースのコード生成は複雑で強力なブラックボックスモデルである。
本稿では,プロンプトと生成されたコードの因果グラフに基づく新しい表現を提案する。
我々は,12以上の迅速な調整戦略で3つの人気のあるLCMを研究することで,我々のフレームワークが提供できる洞察について説明する。
論文 参考訳(メタデータ) (2023-10-10T14:56:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。