Potential Based Diffusion Motion Planning
- URL: http://arxiv.org/abs/2407.06169v1
- Date: Mon, 8 Jul 2024 17:48:39 GMT
- Title: Potential Based Diffusion Motion Planning
- Authors: Yunhao Luo, Chen Sun, Joshua B. Tenenbaum, Yilun Du,
- Abstract summary: We propose a new approach towards learning potential based motion planning.
We train a neural network to capture and learn an easily optimizable potentials over motion planning trajectories.
We demonstrate its inherent composability, enabling us to generalize to a multitude of different motion constraints.
- Score: 73.593988351275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective motion planning in high dimensional spaces is a long-standing open problem in robotics. One class of traditional motion planning algorithms corresponds to potential-based motion planning. An advantage of potential based motion planning is composability -- different motion constraints can be easily combined by adding corresponding potentials. However, constructing motion paths from potentials requires solving a global optimization across configuration space potential landscape, which is often prone to local minima. We propose a new approach towards learning potential based motion planning, where we train a neural network to capture and learn an easily optimizable potentials over motion planning trajectories. We illustrate the effectiveness of such approach, significantly outperforming both classical and recent learned motion planning approaches and avoiding issues with local minima. We further illustrate its inherent composability, enabling us to generalize to a multitude of different motion constraints.
Related papers
- Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning [5.982922468400902]
Fast kinodynamic motion planning is crucial for systems to adapt to dynamically changing environments.
We propose a novel neural network model, it Differentiable Motion Manifold Primitives (DMMP), along with a practical training strategy.
Experiments with a 7-DoF robot arm tasked with dynamic throwing to arbitrary target positions demonstrate that our method surpasses existing approaches in planning speed, task success, and constraint satisfaction.
arXiv Detail & Related papers (2024-10-16T03:29:33Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
This paper introduces a novel learning-to-plan framework that exploits the concept of constraint manifold.
Our approach generates plans satisfying an arbitrary set of constraints and computes them in a short constant time, namely the inference time of a neural network.
We validate our approach on two simulated tasks and in a demanding real-world scenario, where we use a Kuka LBR Iiwa 14 robotic arm to perform the hitting movement in robotic Air Hockey.
arXiv Detail & Related papers (2023-01-11T06:54:11Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
We propose a GNN-based approach that uses temporal encoding and imitation learning with data aggregation for learning both the embeddings and the edge prioritization policies.
Experiments show that the proposed methods can significantly accelerate online planning over state-of-the-art complete dynamic planning algorithms.
arXiv Detail & Related papers (2022-10-16T01:27:16Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Learning Obstacle Representations for Neural Motion Planning [70.80176920087136]
We address sensor-based motion planning from a learning perspective.
Motivated by recent advances in visual recognition, we argue the importance of learning appropriate representations for motion planning.
We propose a new obstacle representation based on the PointNet architecture and train it jointly with policies for obstacle avoidance.
arXiv Detail & Related papers (2020-08-25T17:12:32Z) - Neural Manipulation Planning on Constraint Manifolds [13.774614900994342]
We present Constrained Motion Planning Networks (CoMPNet), the first neural planner for multimodal kinematic constraints.
We show that CoMPNet solves practical motion planning tasks involving both unconstrained and constrained problems.
It generalizes to new unseen locations of the objects, i.e., not seen during training, in the given environments with high success rates.
arXiv Detail & Related papers (2020-08-09T18:58:10Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.