Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning
- URL: http://arxiv.org/abs/2410.12193v1
- Date: Wed, 16 Oct 2024 03:29:33 GMT
- Title: Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning
- Authors: Yonghyeon Lee,
- Abstract summary: Fast kinodynamic motion planning is crucial for systems to adapt to dynamically changing environments.
We propose a novel neural network model, it Differentiable Motion Manifold Primitives (DMMP), along with a practical training strategy.
Experiments with a 7-DoF robot arm tasked with dynamic throwing to arbitrary target positions demonstrate that our method surpasses existing approaches in planning speed, task success, and constraint satisfaction.
- Score: 5.982922468400902
- License:
- Abstract: Fast kinodynamic motion planning is crucial for systems to effectively adapt to dynamically changing environments. Despite some efforts, existing approaches still struggle with rapid planning in high-dimensional, complex problems. Not surprisingly, the primary challenge arises from the high-dimensionality of the search space, specifically the trajectory space. We address this issue with a two-step method: initially, we identify a lower-dimensional trajectory manifold {\it offline}, comprising diverse trajectories specifically relevant to the task at hand while meeting kinodynamic constraints. Subsequently, we search for solutions within this manifold {\it online}, significantly enhancing the planning speed. To encode and generate a manifold of continuous-time, differentiable trajectories, we propose a novel neural network model, {\it Differentiable Motion Manifold Primitives (DMMP)}, along with a practical training strategy. Experiments with a 7-DoF robot arm tasked with dynamic throwing to arbitrary target positions demonstrate that our method surpasses existing approaches in planning speed, task success, and constraint satisfaction.
Related papers
- Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization [0.0]
Dynamic Motion Planning for Multi-Agent Systems in the presence of obstacles is a universal and unsolved problem.
We present a learning-based dynamic navigation model and show our model working on a simple environment in the concept of a simple Robosoccer Game.
arXiv Detail & Related papers (2025-02-08T11:13:07Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
We propose a novel approach for optimal online motion planning with minimal information about dynamic obstacles.
The proposed methodology combines Monte Carlo Tree Search (MCTS), for online optimal planning via model simulations, with Velocity Obstacles (VO), for obstacle avoidance.
We show the superiority of our methodology with respect to state-of-the-art planners, including Non-linear Model Predictive Control (NMPC), in terms of improved collision rate, computational and task performance.
arXiv Detail & Related papers (2025-01-16T16:45:08Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.
This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Potential Based Diffusion Motion Planning [73.593988351275]
We propose a new approach towards learning potential based motion planning.
We train a neural network to capture and learn an easily optimizable potentials over motion planning trajectories.
We demonstrate its inherent composability, enabling us to generalize to a multitude of different motion constraints.
arXiv Detail & Related papers (2024-07-08T17:48:39Z) - Physics-informed Neural Motion Planning on Constraint Manifolds [6.439800184169697]
Constrained Motion Planning (CMP) aims to find a collision-free path between the given start and goal configurations on the kinematic constraint manifold.
We propose the first physics-informed CMP framework that solves the Eikonal equation on the constraint manifold and trains neural function for CMP without expert data.
Our results show that the proposed approach efficiently solves various CMP problems in both simulation and real-world, including object manipulation under orientation constraints and door opening with a high-dimensional 6-DOF robot manipulator.
arXiv Detail & Related papers (2024-03-09T02:24:02Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
This paper introduces a novel learning-to-plan framework that exploits the concept of constraint manifold.
Our approach generates plans satisfying an arbitrary set of constraints and computes them in a short constant time, namely the inference time of a neural network.
We validate our approach on two simulated tasks and in a demanding real-world scenario, where we use a Kuka LBR Iiwa 14 robotic arm to perform the hitting movement in robotic Air Hockey.
arXiv Detail & Related papers (2023-01-11T06:54:11Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
We propose a GNN-based approach that uses temporal encoding and imitation learning with data aggregation for learning both the embeddings and the edge prioritization policies.
Experiments show that the proposed methods can significantly accelerate online planning over state-of-the-art complete dynamic planning algorithms.
arXiv Detail & Related papers (2022-10-16T01:27:16Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Constrained Motion Planning Networks X [15.047777217748889]
We present Constrained Motion Planning Networks X (CoMPNetX)
It is a neural planning approach, comprising a conditional deep neural generator and discriminator with neural gradients-based fast projection operator.
We show that our method finds path solutions with high success rates and lower times than state-of-the-art traditional path-finding tools.
arXiv Detail & Related papers (2020-10-17T03:34:38Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.