CrowdMoGen: Zero-Shot Text-Driven Collective Motion Generation
- URL: http://arxiv.org/abs/2407.06188v1
- Date: Mon, 8 Jul 2024 17:59:36 GMT
- Title: CrowdMoGen: Zero-Shot Text-Driven Collective Motion Generation
- Authors: Xinying Guo, Mingyuan Zhang, Haozhe Xie, Chenyang Gu, Ziwei Liu,
- Abstract summary: Crowd Motion Generation is essential in entertainment industries such as animation and games as well as in strategic fields like urban simulation and planning.
We introduce CrowdMoGen, a zero-shot text-driven framework that harnesses the power of Large Language Model (LLM) to incorporate the collective intelligence into the motion generation framework.
Our framework consists of two key components: 1) Crowd Scene Planner that learns to coordinate motions and dynamics according to specific scene contexts or introduced perturbations, and 2) Collective Motion Generator that efficiently synthesizes the required collective motions.
- Score: 44.9991846328409
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crowd Motion Generation is essential in entertainment industries such as animation and games as well as in strategic fields like urban simulation and planning. This new task requires an intricate integration of control and generation to realistically synthesize crowd dynamics under specific spatial and semantic constraints, whose challenges are yet to be fully explored. On the one hand, existing human motion generation models typically focus on individual behaviors, neglecting the complexities of collective behaviors. On the other hand, recent methods for multi-person motion generation depend heavily on pre-defined scenarios and are limited to a fixed, small number of inter-person interactions, thus hampering their practicality. To overcome these challenges, we introduce CrowdMoGen, a zero-shot text-driven framework that harnesses the power of Large Language Model (LLM) to incorporate the collective intelligence into the motion generation framework as guidance, thereby enabling generalizable planning and generation of crowd motions without paired training data. Our framework consists of two key components: 1) Crowd Scene Planner that learns to coordinate motions and dynamics according to specific scene contexts or introduced perturbations, and 2) Collective Motion Generator that efficiently synthesizes the required collective motions based on the holistic plans. Extensive quantitative and qualitative experiments have validated the effectiveness of our framework, which not only fills a critical gap by providing scalable and generalizable solutions for Crowd Motion Generation task but also achieves high levels of realism and flexibility.
Related papers
- Programmable Motion Generation for Open-Set Motion Control Tasks [51.73738359209987]
We introduce a new paradigm, programmable motion generation.
In this paradigm, any given motion control task is broken down into a combination of atomic constraints.
These constraints are then programmed into an error function that quantifies the degree to which a motion sequence adheres to them.
arXiv Detail & Related papers (2024-05-29T17:14:55Z) - FreeMotion: A Unified Framework for Number-free Text-to-Motion Synthesis [65.85686550683806]
This paper reconsiders motion generation and proposes to unify the single and multi-person motion by the conditional motion distribution.
Based on our framework, the current single-person motion spatial control method could be seamlessly integrated, achieving precise control of multi-person motion.
arXiv Detail & Related papers (2024-05-24T17:57:57Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Large Motion Model for Unified Multi-Modal Motion Generation [50.56268006354396]
Large Motion Model (LMM) is a motion-centric, multi-modal framework that unifies mainstream motion generation tasks into a generalist model.
LMM tackles these challenges from three principled aspects.
arXiv Detail & Related papers (2024-04-01T17:55:11Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions.
We show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity.
arXiv Detail & Related papers (2023-09-04T05:43:48Z) - SoMoFormer: Social-Aware Motion Transformer for Multi-Person Motion
Prediction [10.496276090281825]
We propose a novel Social-Aware Motion Transformer (SoMoFormer) to model individual motion and social interactions in a joint manner.
SoMoFormer extracts motion features from sub-sequences in displacement trajectory space to learn both local and global pose dynamics for each individual.
In addition, we devise a novel social-aware motion attention mechanism in SoMoFormer to further optimize dynamics representations and capture interaction dependencies simultaneously.
arXiv Detail & Related papers (2022-08-19T08:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.