論文の概要: The Impact of an XAI-Augmented Approach on Binary Classification with Scarce Data
- arxiv url: http://arxiv.org/abs/2407.06206v1
- Date: Mon, 1 Jul 2024 21:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 14:07:46.866577
- Title: The Impact of an XAI-Augmented Approach on Binary Classification with Scarce Data
- Title(参考訳): XAI-Augmented Approach がスカースデータを用いたバイナリ分類に及ぼす影響
- Authors: Ximing Wen, Rosina O. Weber, Anik Sen, Darryl Hannan, Steven C. Nesbit, Vincent Chan, Alberto Goffi, Michael Morris, John C. Hunninghake, Nicholas E. Villalobos, Edward Kim, Christopher J. MacLellan,
- Abstract要約: ポイント・オブ・ケア超音波(Point-of-Care Ultrasound、POCUS)は、臨床医が患者のベッドサイドで超音波スキャンを行い、解釈する手法である。
POCUSデバイスは、携帯電話のサイズにおいて妥当なコストで利用できるようになった。
POCUSデバイスを救命ツールに変える上での課題は、超音波画像の解釈には専門的な訓練と経験が必要であることである。
- 参考スコア(独自算出の注目度): 4.438430749767786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point-of-Care Ultrasound (POCUS) is the practice of clinicians conducting and interpreting ultrasound scans right at the patient's bedside. However, the expertise needed to interpret these images is considerable and may not always be present in emergency situations. This reality makes algorithms such as machine learning classifiers extremely valuable to augment human decisions. POCUS devices are becoming available at a reasonable cost in the size of a mobile phone. The challenge of turning POCUS devices into life-saving tools is that interpretation of ultrasound images requires specialist training and experience. Unfortunately, the difficulty to obtain positive training images represents an important obstacle to building efficient and accurate classifiers. Hence, the problem we try to investigate is how to explore strategies to increase accuracy of classifiers trained with scarce data. We hypothesize that training with a few data instances may not suffice for classifiers to generalize causing them to overfit. Our approach uses an Explainable AI-Augmented approach to help the algorithm learn more from less and potentially help the classifier better generalize.
- Abstract(参考訳): ポイント・オブ・ケア超音波(Point-of-Care Ultrasound、POCUS)は、臨床医が患者のベッドサイドで超音波スキャンを行い、解釈する手法である。
しかし、これらの画像の解釈に必要な専門知識は相当なもので、必ずしも緊急時に存在するとは限らない。
この現実は、機械学習の分類器のようなアルゴリズムを、人間の意思決定を強化するのに非常に価値のあるものにしている。
POCUSデバイスは、携帯電話のサイズにおいて妥当なコストで利用できるようになった。
POCUSデバイスを救命ツールに変える上での課題は、超音波画像の解釈には専門的な訓練と経験が必要であることである。
残念なことに、正の訓練画像を得るのが困難であることは、効率的かつ正確な分類器を構築する上で重要な障害である。
したがって、我々は、不足したデータで訓練された分類器の精度を高めるための戦略を探究しようとしている。
少数のデータインスタンスによるトレーニングは、分類器が過度に適合する原因を一般化するのに十分でないかもしれない、という仮説を立てる。
私たちのアプローチでは、説明可能なAI拡張アプローチを使用して、アルゴリズムをより少ないレベルから学習し、分類器をより一般化するのに役立ちます。
関連論文リスト
- Contrastive Deep Encoding Enables Uncertainty-aware
Machine-learning-assisted Histopathology [6.548275341067594]
テラバイトのトレーニングデータを意識的に深層ネットワークにプリトレーニングして情報表現を符号化することができる。
提案手法は,ランダムに選択されたアノテーションが1~10%しかないパッチレベルの分類において,最先端のSOTA(State-of-the-art)に到達可能であることを示す。
論文 参考訳(メタデータ) (2023-09-13T17:37:19Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
SurgLoc 2022 チャレンジの結果を示す。
目標は、ツール検出のためにトレーニングされた機械学習モデルにおいて、ツールの存在データを弱いラベルとして活用することだった。
これらの結果を機械学習と手術データ科学の幅広い文脈で論じることで結論付ける。
論文 参考訳(メタデータ) (2023-05-11T21:44:39Z) - Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
頭蓋内出血(ICH、Intracranial hemorrhage)は、タイムリーな診断と正確な治療を必要とする救命救急疾患である。
深層学習技術は、医用画像解析と処理の先駆的なアプローチとして現れてきた。
ICH分類タスクで訓練されたSwin変換器と分類ラベルを併用した,新しいICHセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T00:17:34Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - Time-based Self-supervised Learning for Wireless Capsule Endoscopy [1.3514953384460016]
本研究は,無線内視鏡ビデオにおける自己教師あり学習の活用を提案する。
本研究では,時間軸から抽出した推定固有構造を用いることで,重度の不均衡下であっても,複数の領域固有のアプリケーションにおける検出率を向上させることを証明する。
論文 参考訳(メタデータ) (2022-04-20T20:31:06Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
我々は、AUCによる新たな深層学習手法による機会と課題を提示し、議論する(別名、アンダーラインbfディープアンダーラインbfAUC分類)。
論文 参考訳(メタデータ) (2021-11-01T15:31:32Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
本稿では,臨床医が提示した生音声からのEUS画像にラベルを付けるマルチモーダル畳み込みニューラルネットワークアーキテクチャを提案する。
その結果,5つのラベルを持つデータセットにおいて,画像レベルでの予測精度は76%であった。
論文 参考訳(メタデータ) (2021-10-12T21:22:24Z) - Ultrasound Image Classification using ACGAN with Small Training Dataset [0.0]
ディープラーニングモデルのトレーニングには大きなラベル付きデータセットが必要であるが、超音波画像では利用できないことが多い。
我々は、大規模データ拡張と転送学習の利点を組み合わせた、ジェネレーティブ・アドバイサル・ネットワーク(ACGAN)を利用する。
乳房超音波画像のデータセットを用いて,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2021-01-31T11:11:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。