Gate-based quantum simulation of Gaussian bosonic circuits on exponentially many modes
- URL: http://arxiv.org/abs/2407.06290v1
- Date: Mon, 8 Jul 2024 18:04:16 GMT
- Title: Gate-based quantum simulation of Gaussian bosonic circuits on exponentially many modes
- Authors: Alice Barthe, M. Cerezo, Andrew T. Sornborger, Martin Larocca, Diego García-Martín,
- Abstract summary: We introduce a framework for simulating, on an $(n+1)$-qubit quantum computer, the action of a Gaussian Bosonic (GB) circuit on a state over $2n$ modes.
Specifically, we encode the initial bosonic state's expectation values over quadrature operators as an input qubit-state.
This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for simulating, on an $(n+1)$-qubit quantum computer, the action of a Gaussian Bosonic (GB) circuit on a state over $2^n$ modes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit-state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real (imaginary) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a BQP-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on $\sim8$ billion modes, illustrating the power of our framework.
Related papers
- Classical analog circuit emulation of quantum Grover search algorithm [0.0]
We construct a completely analog framework that emulates universal quantum gates and quantum algorithms.<n>In these circuits, input and output lines represent the computational basis states (CBSs) and thus $2n$ lines are required to represent $n$ qubits.<n>The framework can emulate entangled states and is free from decoherence, measurements are classical and do not collapse states.
arXiv Detail & Related papers (2025-06-06T19:51:28Z) - Optimising Iteration Scheduling for Full-State Vector Simulation of Quantum Circuits on FPGAs [1.221089353510972]
We present a memory access pattern to optimise the number of iterations that need to be scheduled to execute a quantum gate.
We show that this approach results in a significant reduction in the time required to simulate a gate for each added control qubit.
arXiv Detail & Related papers (2024-11-27T13:57:29Z) - Parallelizing quantum simulation with decision diagrams [2.5999037208435705]
Classical computers face a critical obstacle in simulating quantum algorithms.
Quantum states reside in a Hilbert space whose size grows exponentially to the number of subsystems, i.e., qubits.
This work explores several strategies for parallelizing decision diagram operations, specifically for quantum simulations.
arXiv Detail & Related papers (2023-12-04T02:00:24Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Quantum circuit compilation and hybrid computation using Pauli-based
computation [0.0]
Pauli-based computation (PBC) is driven by a sequence of adaptively chosen, non-destructive measurements of Pauli observables.
We propose practical ways of implementing PBC as adaptive quantum circuits and provide code to do the required classical side-processing.
arXiv Detail & Related papers (2022-03-03T16:01:55Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Gutzwiller wave function on a digital quantum computer [0.0]
We introduce the Gutzwiller Wave Function (GWF) within the context of the digital quantum simulation of the Fermi-Hubbard model.
In the first, the noninteracting state associated with the $U = 0$ limit of the model is prepared.
In the second, the non-unitary Gutzwiller projection that selectively removes states with doubly-occupied sites from the wave function is performed.
arXiv Detail & Related papers (2021-03-29T09:20:51Z) - Efficient quantum circuits for quantum computational chemistry [0.0]
Efficient ways to perform fermionic excitations are vital for the realization of the variational quantum eigensolver (VQE) on noisy intermediate-scale quantum computers.
We demonstrate circuits that perform qubit excitations, excitations that do not account for fermionic anticommutation relations.
Compared to circuits constructed with the standard use of "$CNOT$ staircases," our circuits offer a linear reduction in the number of $CNOT$ gates.
arXiv Detail & Related papers (2020-05-29T09:46:23Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.