Optimising Iteration Scheduling for Full-State Vector Simulation of Quantum Circuits on FPGAs
- URL: http://arxiv.org/abs/2411.18354v1
- Date: Wed, 27 Nov 2024 13:57:29 GMT
- Title: Optimising Iteration Scheduling for Full-State Vector Simulation of Quantum Circuits on FPGAs
- Authors: Youssef Moawad, Andrew Brown, René Steijl, Wim Vanderbauwhede,
- Abstract summary: We present a memory access pattern to optimise the number of iterations that need to be scheduled to execute a quantum gate.
We show that this approach results in a significant reduction in the time required to simulate a gate for each added control qubit.
- Score: 1.221089353510972
- License:
- Abstract: As the field of quantum computing grows, novel algorithms which take advantage of quantum phenomena need to be developed. As we are currently in the NISQ (noisy intermediate scale quantum) era, quantum algorithm researchers cannot reliably test their algorithms on real quantum hardware, which is still too limited. Instead, quantum computing simulators on classical computing systems are used. In the quantum circuit model, quantum bits (qubits) are operated on by quantum gates. A quantum circuit is a sequence of such quantum gates operating on some number of qubits. A quantum gate applied to a qubit can be controlled by other qubits in the circuit. This applies the gate only to the states which satisfy the required control qubit state. We particularly target FPGAs as our main simulation platform, as these offer potential energy savings when compared to running simulations on CPUs/GPUs. In this work, we present a memory access pattern to optimise the number of iterations that need to be scheduled to execute a quantum gate such that only the iterations which access the required pairs (determined according to the control qubits imposed on the gate) are scheduled. We show that this approach results in a significant reduction in the time required to simulate a gate for each added control qubit. We also show that this approach benefits the simulation time on FPGAs more than CPUs and GPUs and allows to outperform both CPU and GPU platforms in terms of energy efficiency, which is the main factor for scalability of the simulations.
Related papers
- Harnessing CUDA-Q's MPS for Tensor Network Simulations of Large-Scale Quantum Circuits [0.0]
Current largest quantum computers feature more than one thousand qubits.
A more appealing approach for simulating quantum computers is adopting the network approach.
We show that network-based methods provide a significant opportunity to simulate large-qubit circuits.
arXiv Detail & Related papers (2025-01-27T10:36:05Z) - AMARETTO: Enabling Efficient Quantum Algorithm Emulation on Low-Tier FPGAs [0.6553587309274792]
AMARETTO is designed for quantum computing emulation on low-tier Field-Programmable gate arrays (FPGAs)
It simplifies and accelerates the verification of quantum algorithms using a Reduced-Instruction-Set-Computer (RISC)-like structure and efficient handling of sparse quantum gates.
arXiv Detail & Related papers (2024-11-14T10:01:53Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Program Scheduling [48.142860424323395]
We introduce the Quantum Program Scheduling Problem (QPSP) to improve the utility efficiency of quantum resources.
Specifically, a quantum program scheduling method concerning the circuit width, number of measurement shots, and submission time of quantum programs is proposed to reduce the execution latency.
arXiv Detail & Related papers (2024-04-11T16:12:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Parallelizing quantum simulation with decision diagrams [2.5999037208435705]
Classical computers face a critical obstacle in simulating quantum algorithms.
Quantum states reside in a Hilbert space whose size grows exponentially to the number of subsystems, i.e., qubits.
This work explores several strategies for parallelizing decision diagram operations, specifically for quantum simulations.
arXiv Detail & Related papers (2023-12-04T02:00:24Z) - Initial-State Dependent Optimization of Controlled Gate Operations with
Quantum Computer [1.2019888796331233]
We introduce a new circuit called AQCEL, which aims to remove redundant controlled operations from controlled gates.
As a benchmark, the AQCEL is deployed on a quantum algorithm designed to model final state radiation in high energy physics.
We have demonstrated that the AQCEL-optimized circuit can produce equivalent final states with much smaller number of gates.
arXiv Detail & Related papers (2022-09-06T09:19:07Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Faster Schr\"odinger-style simulation of quantum circuits [2.0940228639403156]
Recent demonstrations of superconducting quantum computers by Google and IBM fueled new research in quantum algorithms.
We advance Schr"odinger-style simulation of quantum circuits that is useful standalone and as a building block in layered simulation algorithms.
arXiv Detail & Related papers (2020-08-01T08:47:24Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.