An Exact Formula for Quantum Entropy Production along Quantum Trajectories
- URL: http://arxiv.org/abs/2407.06378v2
- Date: Sun, 28 Jul 2024 10:14:03 GMT
- Title: An Exact Formula for Quantum Entropy Production along Quantum Trajectories
- Authors: John E. Gough, Nina H. Amini,
- Abstract summary: We give an exact formula for the rate of change of the von Neumann entropy for the conditional state of a quantum system undergoing continuous measurement.
Here we employ Paycha's Formula citePaycha which gives the noncommutative Taylor series development.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We give an exact formula for the rate of change of the von Neumann entropy for the conditional state of a quantum system undergoing continuous measurement. Here we employ Paycha's Formula \cite{Paycha} which gives the noncommutative Taylor series development.
Related papers
- The Feynman-Kac formula in deformation quantization [0.0]
We introduce the Feynman-Kac formula within the deformation quantization program.
The ground state energy of any prescribed physical system can be obtained from the limit of the phase space integration of the star exponential of the Hamiltonian operator.
arXiv Detail & Related papers (2025-02-05T21:18:28Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Jarzynski-like Equality of Nonequilibrium Information Production Based
on Quantum Cross Entropy [0.8367938108534343]
We employ the one-time measurement scheme to derive a Jarzynski-like equality of nonequilibrium information production.
The derived equality further enables one to explore the roles of the quantum cross entropy in quantum communications, quantum machine learning and quantum thermodynamics.
arXiv Detail & Related papers (2022-09-05T04:47:10Z) - Fluctuation and dissipation in memoryless open quantum evolutions [1.6449390849183356]
Von Neumann entropy rate for open quantum systems is written in terms of entropy production and entropy flow rates.
We find a decomposition of the infinitesimal generator of the dynamics, that allows to relate the rate with the divergence-based quantum Fisher information.
arXiv Detail & Related papers (2021-07-30T21:33:38Z) - The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems [5.524804393257921]
We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems.
We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.
arXiv Detail & Related papers (2021-05-12T12:52:40Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Lagrangian description of Heisenberg and Landau-von Neumann equations of
motion [55.41644538483948]
An explicit Lagrangian description is given for the Heisenberg equation on the algebra of operators of a quantum system, and for the Landau-von Neumann equation on the manifold of quantum states which are isospectral with respect to a fixed reference quantum state.
arXiv Detail & Related papers (2020-05-04T22:46:37Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.