Thermodynamics of adiabatic quantum pumping in quantum dots
- URL: http://arxiv.org/abs/2306.08621v4
- Date: Wed, 11 Sep 2024 12:47:52 GMT
- Title: Thermodynamics of adiabatic quantum pumping in quantum dots
- Authors: Daniele Nello, Alessandro Silva,
- Abstract summary: We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
- Score: 50.24983453990065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads. Using the tools of adiabatic expansion, we develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths. This enables us to study various examples of pumping cycles computing the relevant thermodynamic quantities, such as the entropy produced and the dissipated power. These quantities are compared with the transport properties of the system, i.e. the pumped charge and the charge noise. Among other results, we find that the entropy production rate vanishes in the charge quantization limit while the dissipated power is quantized in the same limit.
Related papers
- Quantum Thermodynamics of Open Quantum Systems: Nature of Thermal Fluctuations [0.0]
We investigate the thermodynamic behavior of open quantum systems through the Hamiltonian of Mean Force.
By analyzing both weak and strong coupling regimes, we uncover the impact of environmental interactions on quantum thermodynamic quantities.
arXiv Detail & Related papers (2024-07-31T13:18:06Z) - Quantum caloric effects [0.0]
This study focuses on deriving general expressions for caloric potentials in quantum systems.
Our results recover the classical cases and also reveal that the isothermal entropy change can be related to genuine quantum correlations in the system.
arXiv Detail & Related papers (2024-06-14T20:39:13Z) - Thermodynamics of the quantum Mpemba effect [0.0]
We show that an exponential speedup to equilibrium will always occur if the state is transformed to a diagonal state in the energy eigenbasis.
When the transformed state has a higher nonequilibrium free energy, we argue using thermodynamic reasoning that this is a textitgenuine quantum Mpemba effect.
arXiv Detail & Related papers (2024-03-25T17:18:23Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exchange fluctuation theorems for strongly interacting quantum pumps [0.0]
We derive a general quantum exchange fluctuation theorem for multipartite systems with arbitrary coupling strengths.
The resulting second law of thermodynamics is tighter than the conventional Clausius inequality.
arXiv Detail & Related papers (2022-09-26T18:01:59Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Thermodynamics of Optical Bloch Equations [0.0]
We study the coherent exchange of energy between a quantum bit (qubit) and a quasi-resonant driving field in the presence of a thermal bath.
We coarse-grain the obtained expressions, using a methodology similar to the derivation of the dynamical master equation.
Our findings can be readily extended to larger open quantum systems.
arXiv Detail & Related papers (2020-01-22T14:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.