RRM: Relightable assets using Radiance guided Material extraction
- URL: http://arxiv.org/abs/2407.06397v1
- Date: Mon, 8 Jul 2024 21:10:31 GMT
- Title: RRM: Relightable assets using Radiance guided Material extraction
- Authors: Diego Gomez, Julien Philip, Adrien Kaiser, Élie Michel,
- Abstract summary: We propose a method that can extract materials, geometry, and environment lighting of a scene even in the presence of highly reflective objects.
Our method consists of a physically-aware radiance field representation that informs physically-based parameters, and an expressive environment light structure based on a Laplacian Pyramid.
We demonstrate that our contributions outperform the state-of-the-art on parameter retrieval tasks, leading to high-fidelity relighting and novel view synthesis on surfacic scenes.
- Score: 5.175522626712229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing NeRFs under arbitrary lighting has become a seminal problem in the last few years. Recent efforts tackle the problem via the extraction of physically-based parameters that can then be rendered under arbitrary lighting, but they are limited in the range of scenes they can handle, usually mishandling glossy scenes. We propose RRM, a method that can extract the materials, geometry, and environment lighting of a scene even in the presence of highly reflective objects. Our method consists of a physically-aware radiance field representation that informs physically-based parameters, and an expressive environment light structure based on a Laplacian Pyramid. We demonstrate that our contributions outperform the state-of-the-art on parameter retrieval tasks, leading to high-fidelity relighting and novel view synthesis on surfacic scenes.
Related papers
- ReCap: Better Gaussian Relighting with Cross-Environment Captures [51.2614945509044]
In this work, we present ReCap, treating cross-environment captures as multi-task target to provide the missing supervision that cuts through the entanglement.
Specifically, ReCap jointly optimize multiple lighting representations that share a common set of material attributes.
This naturally harmonizes a coherent set of lighting representations around the mutual material attributes, exploiting commonalities and differences across varied object appearances.
Together with a streamlined shading function and effective post-processing, ReCap outperforms the leading competitor by 3.4 dB in PSNR on an expanded relighting benchmark.
arXiv Detail & Related papers (2024-12-10T14:15:32Z) - NieR: Normal-Based Lighting Scene Rendering [17.421326290704844]
NieR (Normal-Based Lighting Scene Rendering) is a novel framework that takes into account the nuances of light reflection on diverse material surfaces.
We present the LD (Light Decomposition) module, which captures the lighting reflection characteristics on surfaces.
We also propose the HNGD (Hierarchical Normal Gradient Densification) module to overcome the limitations of sparse Gaussian representation.
arXiv Detail & Related papers (2024-05-21T14:24:43Z) - Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient [73.52585139592398]
We propose a novel framework for learning the radiance transfer field via volume rendering.
We will release our code and a novel light stage dataset of objects with subsurface scattering effects publicly available.
arXiv Detail & Related papers (2023-06-15T17:56:04Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
We propose a framework named neural ambient illumination (NeAI)
NeAI uses Neural Radiance Fields (NeRF) as a lighting model to handle complex lighting in a physically based way.
Experiments demonstrate the superior performance of novel-view rendering compared to previous works.
arXiv Detail & Related papers (2023-04-18T06:32:30Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
We propose a method for scene relighting under novel views by learning a neural precomputed radiance transfer function.
Our method can be solely supervised on a set of real images of the scene under a single unknown lighting condition.
Results show that the recovered disentanglement of scene parameters improves significantly over the current state of the art.
arXiv Detail & Related papers (2022-07-27T16:07:48Z) - NeILF: Neural Incident Light Field for Physically-based Material
Estimation [31.230609753253713]
We present a differentiable rendering framework for material and lighting estimation from multi-view images and a reconstructed geometry.
In the framework, we represent scene lightings as the Neural Incident Light Field (NeILF) and material properties as the surface BRDF modelled by multi-layer perceptrons.
arXiv Detail & Related papers (2022-03-14T15:23:04Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
We address the problem of recovering shape and spatially-varying reflectance of an object from posed multi-view images of the object illuminated by one unknown lighting condition.
This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties.
arXiv Detail & Related papers (2021-06-03T16:18:01Z) - PhySG: Inverse Rendering with Spherical Gaussians for Physics-based
Material Editing and Relighting [60.75436852495868]
We present PhySG, an inverse rendering pipeline that reconstructs geometry, materials, and illumination from scratch from RGB input images.
We demonstrate, with both synthetic and real data, that our reconstructions not only enable rendering of novel viewpoints, but also physics-based appearance editing of materials and illumination.
arXiv Detail & Related papers (2021-04-01T17:59:02Z) - NeRV: Neural Reflectance and Visibility Fields for Relighting and View
Synthesis [45.71507069571216]
We present a method that takes as input a set of images of a scene illuminated by unconstrained known lighting.
This produces a 3D representation that can be rendered from novel viewpoints under arbitrary lighting conditions.
arXiv Detail & Related papers (2020-12-07T18:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.