AnatoMask: Enhancing Medical Image Segmentation with Reconstruction-guided Self-masking
- URL: http://arxiv.org/abs/2407.06468v2
- Date: Tue, 16 Jul 2024 21:04:26 GMT
- Title: AnatoMask: Enhancing Medical Image Segmentation with Reconstruction-guided Self-masking
- Authors: Yuheng Li, Tianyu Luan, Yizhou Wu, Shaoyan Pan, Yenho Chen, Xiaofeng Yang,
- Abstract summary: Masked image modeling (MIM) has shown effectiveness by reconstructing randomly masked images to learn detailed representations.
We propose AnatoMask, a novel MIM method that leverages reconstruction loss to dynamically identify and mask out anatomically significant regions.
- Score: 5.844539603252746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the scarcity of labeled data, self-supervised learning (SSL) has gained much attention in 3D medical image segmentation, by extracting semantic representations from unlabeled data. Among SSL strategies, Masked image modeling (MIM) has shown effectiveness by reconstructing randomly masked images to learn detailed representations. However, conventional MIM methods require extensive training data to achieve good performance, which still poses a challenge for medical imaging. Since random masking uniformly samples all regions within medical images, it may overlook crucial anatomical regions and thus degrade the pretraining efficiency. We propose AnatoMask, a novel MIM method that leverages reconstruction loss to dynamically identify and mask out anatomically significant regions to improve pretraining efficacy. AnatoMask takes a self-distillation approach, where the model learns both how to find more significant regions to mask and how to reconstruct these masked regions. To avoid suboptimal learning, Anatomask adjusts the pretraining difficulty progressively using a masking dynamics function. We have evaluated our method on 4 public datasets with multiple imaging modalities (CT, MRI, and PET). AnatoMask demonstrates superior performance and scalability compared to existing SSL methods. The code is available at https://github.com/ricklisz/AnatoMask.
Related papers
- Enhanced Self-supervised Learning for Multi-modality MRI Segmentation and Classification: A Novel Approach Avoiding Model Collapse [6.3467517115551875]
Multi-modality magnetic resonance imaging (MRI) can provide complementary information for computer-aided diagnosis.
Traditional deep learning algorithms are suitable for identifying specific anatomical structures segmenting lesions and classifying diseases with magnetic resonance images.
Self-supervised learning (SSL) can effectively learn feature representations from unlabeled data by pre-training and is demonstrated to be effective in natural image analysis.
Most SSL methods ignore the similarity of multi-modality MRI, leading to model collapse.
We establish and validate a multi-modality MRI masked autoencoder consisting of hybrid mask pattern (HMP) and pyramid barlow twin (PBT
arXiv Detail & Related papers (2024-07-15T01:11:30Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
Self-supervised masked image modeling has shown promising results on natural images.
However, directly applying such methods to medical images remains challenging.
We propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP)
arXiv Detail & Related papers (2023-09-08T13:18:10Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - MPS-AMS: Masked Patches Selection and Adaptive Masking Strategy Based
Self-Supervised Medical Image Segmentation [46.76171191827165]
We propose masked patches selection and adaptive masking strategy based self-supervised medical image segmentation method, named MPS-AMS.
Our proposed method greatly outperforms the state-of-the-art self-supervised baselines.
arXiv Detail & Related papers (2023-02-27T11:57:06Z) - Hierarchical Dynamic Masks for Visual Explanation of Neural Networks [5.333582981327497]
Saliency methods generating visual explanatory maps representing the importance of image pixels for model classification is a popular technique for explaining neural network decisions.
We propose hierarchical dynamic masks (HDM), a novel explanatory maps generation method, to enhance the granularity and comprehensiveness of saliency maps.
The proposed method outperformed previous approaches significantly in terms of recognition and localization capabilities when tested on natural and medical datasets.
arXiv Detail & Related papers (2023-01-12T12:24:49Z) - Stare at What You See: Masked Image Modeling without Reconstruction [154.74533119863864]
Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training.
Recent approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance.
We argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.
arXiv Detail & Related papers (2022-11-16T12:48:52Z) - Adversarial Masking for Self-Supervised Learning [81.25999058340997]
Masked image model (MIM) framework for self-supervised learning, ADIOS, is proposed.
It simultaneously learns a masking function and an image encoder using an adversarial objective.
It consistently improves on state-of-the-art self-supervised learning (SSL) methods on a variety of tasks and datasets.
arXiv Detail & Related papers (2022-01-31T10:23:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.