Computer vision tasks for intelligent aerospace missions: An overview
- URL: http://arxiv.org/abs/2407.06513v1
- Date: Tue, 9 Jul 2024 02:50:54 GMT
- Title: Computer vision tasks for intelligent aerospace missions: An overview
- Authors: Huilin Chen, Qiyu Sun, Fangfei Li, Yang Tang,
- Abstract summary: Computer vision tasks are crucial for aerospace missions as they help spacecraft to understand and interpret the space environment.
Traditional methods like Kalman Filtering, Structure from Motion, and Multi-View Stereo are not robust enough to handle harsh conditions.
Deep learning (DL)-based perception technologies have shown great potential and outperformed traditional methods.
- Score: 10.929595257238548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer vision tasks are crucial for aerospace missions as they help spacecraft to understand and interpret the space environment, such as estimating position and orientation, reconstructing 3D models, and recognizing objects, which have been extensively studied to successfully carry out the missions. However, traditional methods like Kalman Filtering, Structure from Motion, and Multi-View Stereo are not robust enough to handle harsh conditions, leading to unreliable results. In recent years, deep learning (DL)-based perception technologies have shown great potential and outperformed traditional methods, especially in terms of their robustness to changing environments. To further advance DL-based aerospace perception, various frameworks, datasets, and strategies have been proposed, indicating significant potential for future applications. In this survey, we aim to explore the promising techniques used in perception tasks and emphasize the importance of DL-based aerospace perception. We begin by providing an overview of aerospace perception, including classical space programs developed in recent years, commonly used sensors, and traditional perception methods. Subsequently, we delve into three fundamental perception tasks in aerospace missions: pose estimation, 3D reconstruction, and recognition, as they are basic and crucial for subsequent decision-making and control. Finally, we discuss the limitations and possibilities in current research and provide an outlook on future developments, including the challenges of working with limited datasets, the need for improved algorithms, and the potential benefits of multi-source information fusion.
Related papers
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey [82.49623756124357]
Zero-shot image recognition (ZSIR) aims at empowering models to recognize and reason in unseen domains.
This paper presents a broad review of recent advances in element-wise ZSIR.
We first attempt to integrate the three basic ZSIR tasks of object recognition, compositional recognition, and foundation model-based open-world recognition into a unified element-wise perspective.
arXiv Detail & Related papers (2024-08-09T05:49:21Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - SpatialPIN: Enhancing Spatial Reasoning Capabilities of Vision-Language Models through Prompting and Interacting 3D Priors [42.85605789984155]
Current state-of-the-art spatial reasoning-enhanced VLMs are trained to excel at spatial visual question answering (VQA)
We present SpatialPIN, a framework designed to enhance the spatial reasoning capabilities of VLMs through prompting and interacting with priors from multiple 3D foundation models in a zero-shot, training-free manner.
Our spatial reasoning-imbued VLM performs well on various forms of spatial VQA and can extend to help in various downstream robotics tasks such as pick and stack and trajectory planning.
arXiv Detail & Related papers (2024-03-18T17:38:29Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics.
We develop an automatic 3D spatial VQA data generation framework that scales up to 2 billion VQA examples on 10 million real-world images.
By training a VLM on such data, we significantly enhance its ability on both qualitative and quantitative spatial VQA.
arXiv Detail & Related papers (2024-01-22T18:01:01Z) - Challenges for Monocular 6D Object Pose Estimation in Robotics [12.037567673872662]
We provide a unified view on recent publications from both robotics and computer vision.
We find that occlusion handling, novel pose representations, and formalizing and improving category-level pose estimation are still fundamental challenges.
In order to address them, ontological reasoning, deformability handling, scene-level reasoning, realistic datasets, and the ecological footprint of algorithms need to be improved.
arXiv Detail & Related papers (2023-07-22T21:36:57Z) - A Survey on Deep Learning-Based Monocular Spacecraft Pose Estimation:
Current State, Limitations and Prospects [7.08026800833095]
Estimating the pose of an uncooperative spacecraft is an important computer vision problem for enabling vision-based systems in orbit.
Following the general trend in computer vision, more and more works have been focusing on leveraging Deep Learning (DL) methods to address this problem.
Despite promising research-stage results, major challenges preventing the use of such methods in real-life missions still stand in the way.
arXiv Detail & Related papers (2023-05-12T09:52:53Z) - A Review on Viewpoints and Path-planning for UAV-based 3D Reconstruction [3.0479044961661708]
3D reconstruction using the data captured by UAVs is also attracting attention in research and industry.
This review paper investigates a wide range of model-free and model-based algorithms for viewpoint and path planning for 3D reconstruction of large-scale objects.
arXiv Detail & Related papers (2022-05-07T20:29:39Z) - Deep Learning-based Spacecraft Relative Navigation Methods: A Survey [3.964047152162558]
This survey aims to investigate the current deep learning-based autonomous spacecraft relative navigation methods.
It focuses on concrete orbital applications such as spacecraft rendezvous and landing on small bodies or the Moon.
arXiv Detail & Related papers (2021-08-19T18:54:19Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
The aerospace industry is poised to capitalize on big data and machine learning.
Recent trends will be explored in context of critical challenges in design, manufacturing, verification and services.
arXiv Detail & Related papers (2020-08-24T22:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.