Decomposition Betters Tracking Everything Everywhere
- URL: http://arxiv.org/abs/2407.06531v2
- Date: Tue, 16 Jul 2024 14:11:47 GMT
- Title: Decomposition Betters Tracking Everything Everywhere
- Authors: Rui Li, Dong Liu,
- Abstract summary: We propose a new test-time optimization method, named DecoMotion, for estimating per-pixel and long-range motion.
Our method boosts the point-tracking accuracy by a large margin and performs on par with some state-of-the-art dedicated point-tracking solutions.
- Score: 8.199205242808592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies on motion estimation have advocated an optimized motion representation that is globally consistent across the entire video, preferably for every pixel. This is challenging as a uniform representation may not account for the complex and diverse motion and appearance of natural videos. We address this problem and propose a new test-time optimization method, named DecoMotion, for estimating per-pixel and long-range motion. DecoMotion explicitly decomposes video content into static scenes and dynamic objects, either of which uses a quasi-3D canonical volume to represent. DecoMotion separately coordinates the transformations between local and canonical spaces, facilitating an affine transformation for the static scene that corresponds to camera motion. For the dynamic volume, DecoMotion leverages discriminative and temporally consistent features to rectify the non-rigid transformation. The two volumes are finally fused to fully represent motion and appearance. This divide-and-conquer strategy leads to more robust tracking through occlusions and deformations and meanwhile obtains decomposed appearances. We conduct evaluations on the TAP-Vid benchmark. The results demonstrate our method boosts the point-tracking accuracy by a large margin and performs on par with some state-of-the-art dedicated point-tracking solutions.
Related papers
- Shape of Motion: 4D Reconstruction from a Single Video [51.04575075620677]
We introduce a method capable of reconstructing generic dynamic scenes, featuring explicit, full-sequence-long 3D motion.
We exploit the low-dimensional structure of 3D motion by representing scene motion with a compact set of SE3 motion bases.
Our method achieves state-of-the-art performance for both long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes.
arXiv Detail & Related papers (2024-07-18T17:59:08Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.
SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.
Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - Tracking Everything Everywhere All at Once [111.00807055441028]
We present a new test-time optimization method for estimating dense and long-range motion from a video sequence.
We propose a complete and globally consistent motion representation, dubbed OmniMotion.
Our approach outperforms prior state-of-the-art methods by a large margin both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-06-08T17:59:29Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
We present a robust dense indirect structure-from-motion method for videos that is based on dense correspondence from pairwise optical flow.
A novel neural network architecture is proposed for processing irregular point trajectory data.
Experiments on MPI Sintel dataset show that our system produces significantly more accurate camera trajectories.
arXiv Detail & Related papers (2022-07-19T09:19:45Z) - Visual Odometry with an Event Camera Using Continuous Ray Warping and
Volumetric Contrast Maximization [31.627936023222052]
We present a new solution to tracking and mapping with an event camera.
The motion of the camera contains both rotation and translation, and the displacements happen in an arbitrarily structured environment.
We introduce a new solution to this problem by performing contrast in 3D.
The practical validity of our approach is supported by an application to AGV motion estimation and 3D reconstruction with a single vehicle-mounted event camera.
arXiv Detail & Related papers (2021-07-07T04:32:57Z) - Affine-modeled video extraction from a single motion blurred image [3.0080996413230667]
A motion-blurred image is the temporal average of multiple sharp frames over the exposure time.
In this work, we report a generalized video extraction method using the affine motion modeling.
Experiments on both public datasets and real captured data validate the state-of-the-art performance of the reported technique.
arXiv Detail & Related papers (2021-04-08T13:59:14Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
We have developed a method to identify independently objects acquired with an event-based camera.
The method performs on par or better than the state of the art without having to predetermine the number of expected moving objects.
arXiv Detail & Related papers (2020-12-16T04:06:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.