LETS-C: Leveraging Language Embedding for Time Series Classification
- URL: http://arxiv.org/abs/2407.06533v1
- Date: Tue, 9 Jul 2024 04:07:57 GMT
- Title: LETS-C: Leveraging Language Embedding for Time Series Classification
- Authors: Rachneet Kaur, Zhen Zeng, Tucker Balch, Manuela Veloso,
- Abstract summary: We propose an alternative approach to leveraging the success of language modeling in the time series domain.
We utilize a language embedding model to embed time series and then pair the embeddings with a simple classification head composed of convolutional neural networks (CNN) and multilayer perceptron (MLP)
Our findings suggest that leveraging language encoders to embed time series data, combined with a simple yet effective classification head, offers a promising direction for achieving high-performance time series classification.
- Score: 15.520883566827608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in language modeling have shown promising results when applied to time series data. In particular, fine-tuning pre-trained large language models (LLMs) for time series classification tasks has achieved state-of-the-art (SOTA) performance on standard benchmarks. However, these LLM-based models have a significant drawback due to the large model size, with the number of trainable parameters in the millions. In this paper, we propose an alternative approach to leveraging the success of language modeling in the time series domain. Instead of fine-tuning LLMs, we utilize a language embedding model to embed time series and then pair the embeddings with a simple classification head composed of convolutional neural networks (CNN) and multilayer perceptron (MLP). We conducted extensive experiments on well-established time series classification benchmark datasets. We demonstrated LETS-C not only outperforms the current SOTA in classification accuracy but also offers a lightweight solution, using only 14.5% of the trainable parameters on average compared to the SOTA model. Our findings suggest that leveraging language encoders to embed time series data, combined with a simple yet effective classification head, offers a promising direction for achieving high-performance time series classification while maintaining a lightweight model architecture.
Related papers
- Revisited Large Language Model for Time Series Analysis through Modality Alignment [16.147350486106777]
Large Language Models have demonstrated impressive performance in many pivotal web applications such as sensor data analysis.
In this study, we assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection.
Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data.
arXiv Detail & Related papers (2024-10-16T07:47:31Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
This paper presents ML-SUPERB2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models.
We find performance improvements over the setup of ML-SUPERB, but performance depends on the downstream model design.
Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches.
arXiv Detail & Related papers (2024-06-12T21:01:26Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - UNITS: A Unified Multi-Task Time Series Model [31.675845788410246]
We introduce UniTS, a multi-task time series model that uses task tokenization to express predictive and generative tasks within a single model.
Across 38 datasets spanning human activity sensors, healthcare, engineering, and finance domains, UniTS model performs favorably against 12 forecasting models, 20 classification models, 18 anomaly detection models, and 16 imputation models.
arXiv Detail & Related papers (2024-02-29T21:25:58Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Interpretable Time Series Classification using Linear Models and
Multi-resolution Multi-domain Symbolic Representations [6.6147550436077776]
We propose new time series classification algorithms to address gaps in current approaches.
Our approach is based on symbolic representations of time series, efficient sequence mining algorithms and linear classification models.
Our models are as accurate as deep learning models but are more efficient regarding running time and memory, can work with variable-length time series and can be interpreted by highlighting the discriminative symbolic features on the original time series.
arXiv Detail & Related papers (2020-05-31T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.