論文の概要: Early Detection of Network Service Degradation: An Intra-Flow Approach
- arxiv url: http://arxiv.org/abs/2407.06637v1
- Date: Tue, 9 Jul 2024 08:05:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:56:02.860348
- Title: Early Detection of Network Service Degradation: An Intra-Flow Approach
- Title(参考訳): ネットワークサービス劣化の早期検出:フロー内アプローチ
- Authors: Balint Bicski, Adrian Pekar,
- Abstract要約: 本研究では,早期のフロー特性を利用して,コンピュータネットワークにおけるサービス劣化(SD)を予測する新しい手法を提案する。
我々のアプローチは、ネットワークフローの観測可能な(O)セグメント、特にパケット間時間(PIAT)の分析に焦点を当てている。
我々は,10個の遅延サンプルの最適O/NO分割閾値を推定し,予測精度と資源利用量のバランスをとる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research presents a novel method for predicting service degradation (SD) in computer networks by leveraging early flow features. Our approach focuses on the observable (O) segments of network flows, particularly analyzing Packet Inter-Arrival Time (PIAT) values and other derived metrics, to infer the behavior of non-observable (NO) segments. Through a comprehensive evaluation, we identify an optimal O/NO split threshold of 10 observed delay samples, balancing prediction accuracy and resource utilization. Evaluating models including Logistic Regression, XGBoost, and Multi-Layer Perceptron, we find XGBoost outperforms others, achieving an F1-score of 0.74, balanced accuracy of 0.84, and AUROC of 0.97. Our findings highlight the effectiveness of incorporating comprehensive early flow features and the potential of our method to offer a practical solution for monitoring network traffic in resource-constrained environments. This approach ensures enhanced user experience and network performance by preemptively addressing potential SD, providing the basis for a robust framework for maintaining high-quality network services.
- Abstract(参考訳): 本研究では,早期のフロー特性を利用して,コンピュータネットワークにおけるサービス劣化(SD)を予測する新しい手法を提案する。
本稿では,ネットワークフローの観測可能な(O)セグメントに着目し,特にパケット間時間(PIAT)値や他の派生メトリクスを分析し,観測不可能な(NO)セグメントの挙動を推定する。
総合評価により,観測遅延サンプル10点の最適O/NO分割閾値を同定し,予測精度と資源利用量のバランスをとる。
Logistic Regression、XGBoost、Multi-Layer Perceptronなどのモデルを評価すると、XGBoostは他のモデルよりも優れており、F1スコアは0.74、バランスの取れた精度は0.84、AUROCは0.97である。
本研究は, 資源制約環境におけるネットワークトラフィック監視の実践的ソリューションとして, 包括的早期フロー機能の導入の有効性と本手法の可能性を明らかにするものである。
このアプローチは、潜在的なSDにプリエンプティブに対処することで、ユーザエクスペリエンスとネットワークパフォーマンスの向上を保証し、高品質なネットワークサービスを維持するための堅牢なフレームワークの基礎を提供する。
関連論文リスト
- Acquiring Better Load Estimates by Combining Anomaly and Change Point Detection in Power Grid Time-series Measurements [0.49478969093606673]
提案手法は,可視データに対する堅牢かつ一般化可能な性能を確保しつつ,解釈可能性の優先順位付けを行う。
その結果, 濾過が適用されない場合に, 洗浄電位が明らかになることが示唆された。
我々の方法論の解釈可能性によって、重要なインフラ計画に特に適しています。
論文 参考訳(メタデータ) (2024-05-25T10:15:51Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Low Complexity Adaptive Machine Learning Approaches for End-to-End
Latency Prediction [0.0]
この研究は、予測、監視、予測のための効率的で低コストな適応アルゴリズムの設計である。
我々は,GNNにおける近年の国際的課題の後に提供されたパブリックジェネレータから得られるデータに対して,我々のアプローチと結果を説明するために,エンドツーエンドの遅延予測に焦点を当てた。
論文 参考訳(メタデータ) (2023-01-31T10:29:11Z) - Rethinking Value Function Learning for Generalization in Reinforcement
Learning [11.516147824168732]
我々は、観測一般化性能を向上させるために、複数の訓練環境においてRLエージェントを訓練することの課題に焦点をあてる。
マルチ環境設定における価値ネットワークは、従来の単一環境設定よりもトレーニングデータの過度な適合を最適化し難い。
本稿では,政策ネットワークよりもトレーニングデータが多い値ネットワークを少ない頻度で最適化することにより,暗黙的に評価値のペナルティ化を行うDelayed-Critic Policy Gradient (DCPG)を提案する。
論文 参考訳(メタデータ) (2022-10-18T16:17:47Z) - Adaptive network reliability analysis: Methodology and applications to
power grid [0.0]
本研究では,ベイジアン付加回帰木(ANR-BART)を用いた適応代理型ネットワーク信頼性解析法を提案する。
その結果、ANR-BARTは堅牢であり、信頼性解析の計算コストを大幅に削減しつつ、ネットワーク障害確率の正確な推定値が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-11T19:58:08Z) - Robust Learning via Persistency of Excitation [4.674053902991301]
勾配勾配勾配を用いたネットワークトレーニングは力学系パラメータ推定問題と等価であることを示す。
極値理論を用いて対応するリプシッツ定数を推定する効率的な手法を提案する。
我々の手法は、様々な最先端の対数訓練モデルにおいて、対数精度を0.1%から0.3%に普遍的に向上させる。
論文 参考訳(メタデータ) (2021-06-03T18:49:05Z) - BCNet: Searching for Network Width with Bilaterally Coupled Network [56.14248440683152]
この問題に対処するため、BCNet(Bilaterally Coupled Network)と呼ばれる新しいスーパーネットを導入する。
BCNetでは、各チャネルは高度に訓練され、同じ量のネットワーク幅を担っているため、ネットワーク幅をより正確に評価することができる。
提案手法は,他のベースライン手法と比較して,最先端あるいは競合的な性能を実現する。
論文 参考訳(メタデータ) (2021-05-21T18:54:03Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
本稿では,新たな計算コストを伴わずに,実数値ネットワークからの精度ギャップを埋めるため,バイナリネットワークを強化するためのいくつかのアイデアを提案する。
まず,パラメータフリーのショートカットを用いて,コンパクトな実数値ネットワークを修正・バイナライズすることで,ベースラインネットワークを構築する。
提案したReActNetはすべての最先端技術よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2020-03-07T02:12:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。