Improving the Transferability of Adversarial Examples by Feature Augmentation
- URL: http://arxiv.org/abs/2407.06714v1
- Date: Tue, 9 Jul 2024 09:41:40 GMT
- Title: Improving the Transferability of Adversarial Examples by Feature Augmentation
- Authors: Donghua Wang, Wen Yao, Tingsong Jiang, Xiaohu Zheng, Junqi Wu, Xiaoqian Chen,
- Abstract summary: We propose a simple but effective feature augmentation attack (FAUG) method, which improves adversarial transferability without introducing extra computation costs.
Specifically, we inject the random noise into the intermediate features of the model to enlarge the diversity of the attack gradient.
Our method can be combined with existing gradient attacks to augment their performance further.
- Score: 6.600860987969305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of input transformation-based attacks on boosting adversarial transferability, the performance is unsatisfying due to the ignorance of the discrepancy across models. In this paper, we propose a simple but effective feature augmentation attack (FAUG) method, which improves adversarial transferability without introducing extra computation costs. Specifically, we inject the random noise into the intermediate features of the model to enlarge the diversity of the attack gradient, thereby mitigating the risk of overfitting to the specific model and notably amplifying adversarial transferability. Moreover, our method can be combined with existing gradient attacks to augment their performance further. Extensive experiments conducted on the ImageNet dataset across CNN and transformer models corroborate the efficacy of our method, e.g., we achieve improvement of +26.22% and +5.57% on input transformation-based attacks and combination methods, respectively.
Related papers
- Bag of Tricks to Boost Adversarial Transferability [5.803095119348021]
adversarial examples generated under the white-box setting often exhibit low transferability across different models.
In this work, we find that several tiny changes in the existing adversarial attacks can significantly affect the attack performance.
Based on careful studies of existing adversarial attacks, we propose a bag of tricks to enhance adversarial transferability.
arXiv Detail & Related papers (2024-01-16T17:42:36Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
We introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters.
Our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively.
arXiv Detail & Related papers (2023-07-21T03:43:07Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
We propose a new gradient-based attack method for adversarial examples.
We use the exact gradient direction with a scaling factor for generating adversarial perturbations.
Our method exhibits higher transferability and outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-11-27T07:57:41Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting.
We propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes.
Our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods.
arXiv Detail & Related papers (2021-07-05T06:17:47Z) - Boosting Adversarial Transferability through Enhanced Momentum [50.248076722464184]
Deep learning models are vulnerable to adversarial examples crafted by adding human-imperceptible perturbations on benign images.
Various momentum iterative gradient-based methods are shown to be effective to improve the adversarial transferability.
We propose an enhanced momentum iterative gradient-based method to further enhance the adversarial transferability.
arXiv Detail & Related papers (2021-03-19T03:10:32Z) - Random Transformation of Image Brightness for Adversarial Attack [5.405413975396116]
adversarial examples are crafted by adding small, human-imperceptibles to the original images.
Deep neural networks are vulnerable to adversarial examples, which are crafted by adding small, human-imperceptibles to the original images.
We propose an adversarial example generation method based on this phenomenon, which can be integrated with Fast Gradient Sign Method.
Our method has a higher success rate for black-box attacks than other attack methods based on data augmentation.
arXiv Detail & Related papers (2021-01-12T07:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.