Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation
- URL: http://arxiv.org/abs/2502.17003v1
- Date: Mon, 24 Feb 2025 09:35:30 GMT
- Title: Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation
- Authors: Wenyuan Wu, Zheng Liu, Yong Chen, Chao Su, Dezhong Peng, Xu Wang,
- Abstract summary: Inverse Knowledge Distillation (IKD) is designed to enhance adversarial transferability effectively.<n>IKD integrates with gradient-based attack methods, promoting diversity in attack gradients and mitigating overfitting to specific model architectures.<n>Experiments on the ImageNet dataset validate the effectiveness of our approach.
- Score: 15.362394334872077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the rapid development of deep neural networks has brought increased attention to the security and robustness of these models. While existing adversarial attack algorithms have demonstrated success in improving adversarial transferability, their performance remains suboptimal due to a lack of consideration for the discrepancies between target and source models. To address this limitation, we propose a novel method, Inverse Knowledge Distillation (IKD), designed to enhance adversarial transferability effectively. IKD introduces a distillation-inspired loss function that seamlessly integrates with gradient-based attack methods, promoting diversity in attack gradients and mitigating overfitting to specific model architectures. By diversifying gradients, IKD enables the generation of adversarial samples with superior generalization capabilities across different models, significantly enhancing their effectiveness in black-box attack scenarios. Extensive experiments on the ImageNet dataset validate the effectiveness of our approach, demonstrating substantial improvements in the transferability and attack success rates of adversarial samples across a wide range of models.
Related papers
- Sustainable Self-evolution Adversarial Training [51.25767996364584]
We propose a Sustainable Self-Evolution Adversarial Training (SSEAT) framework for adversarial training defense models.
We introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples.
We also propose an adversarial data replay module to better select more diverse and key relearning data.
arXiv Detail & Related papers (2024-12-03T08:41:11Z) - Improving the Transferability of Adversarial Examples by Feature Augmentation [6.600860987969305]
We propose a simple but effective feature augmentation attack (FAUG) method, which improves adversarial transferability without introducing extra computation costs.
Specifically, we inject the random noise into the intermediate features of the model to enlarge the diversity of the attack gradient.
Our method can be combined with existing gradient attacks to augment their performance further.
arXiv Detail & Related papers (2024-07-09T09:41:40Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
adversarial examples introduce imperceptible perturbations to benign samples, deceiving predictions.
Deep neural networks (DNNs) are susceptible to adversarial examples, which introduce imperceptible perturbations to benign samples, deceiving predictions.
We introduce a novel attack method called Stable Diffusion Attack Method (SDAM), which incorporates samples generated by Stable Diffusion to augment input images.
arXiv Detail & Related papers (2023-11-18T09:10:07Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Boosting Adversarial Transferability through Enhanced Momentum [50.248076722464184]
Deep learning models are vulnerable to adversarial examples crafted by adding human-imperceptible perturbations on benign images.
Various momentum iterative gradient-based methods are shown to be effective to improve the adversarial transferability.
We propose an enhanced momentum iterative gradient-based method to further enhance the adversarial transferability.
arXiv Detail & Related papers (2021-03-19T03:10:32Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.