論文の概要: TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data
- arxiv url: http://arxiv.org/abs/2407.06849v1
- Date: Tue, 9 Jul 2024 13:32:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 17:57:30.815368
- Title: TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data
- Title(参考訳): TeVAE: 可変状態多変量時系列データにおける離散オンライン異常検出のための変分オートエンコーダアプローチ
- Authors: Lucas Correia, Jan-Christoph Goos, Philipp Klein, Thomas Bäck, Anna V. Kononova,
- Abstract要約: 本研究では,時間変動型オートエンコーダ(TeVAE)を提案する。
適切に設定された場合、TeVAEは異常を6%だけ間違ったタイミングでフラグし、65%の異常を検知する。
- 参考スコア(独自算出の注目度): 0.017476232824732776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As attention to recorded data grows in the realm of automotive testing and manual evaluation reaches its limits, there is a growing need for automatic online anomaly detection. This real-world data is complex in many ways and requires the modelling of testee behaviour. To address this, we propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data. Our approach also avoids the bypass phenomenon and introduces a new method to remap individual windows to a continuous time series. Furthermore, we propose metrics to evaluate the detection delay and root-cause capability of our approach and present results from experiments on a real-world industrial data set. When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present. It also has the potential to perform well with a smaller training and validation subset but requires a more sophisticated threshold estimation method.
- Abstract(参考訳): 自動車テストの領域で記録データへの注目が高まり、手動による評価が限界に達するにつれ、自動オンライン異常検出の必要性が高まっている。
この現実世界のデータは多くの点で複雑で、テスターの振る舞いをモデル化する必要があります。
そこで本稿では,時間変動オートエンコーダ(TeVAE)を提案する。
提案手法では,このバイパス現象を回避し,個別のウィンドウを連続時系列に再マップする手法を提案する。
さらに,本手法の検知遅延と根本原因度を評価する指標を提案し,実世界の産業データセットの実験結果を示す。
適切に設定された場合、TeVAEは異常を6%だけ間違ったタイミングでフラグし、65%の異常を検知する。
また、より小さなトレーニングと検証サブセットでうまく機能する可能性があるが、より洗練されたしきい値推定方法が必要である。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Attention and Autoencoder Hybrid Model for Unsupervised Online Anomaly
Detection [3.6049348666007934]
本稿では,時系列における教師なしオンライン異常検出のためのハイブリッドアテンションとオートエンコーダ(AE)モデルを提案する。
オートエンコーダは局所的な構造パターンを短い埋め込みで捉え、アテンションモデルは長期的特徴を学習し、位置符号化による並列計算を容易にする。
これは、ディープトランスモデルに似た注意に基づくメカニズムを採用しており、オートエンコーダの潜在空間における次のステップウィンドウを予測するための重要なアーキテクチャ上の変更である。
論文 参考訳(メタデータ) (2024-01-06T22:55:02Z) - MA-VAE: Multi-head Attention-based Variational Autoencoder Approach for
Anomaly Detection in Multivariate Time-series Applied to Automotive Endurance
Powertrain Testing [0.7499722271664147]
マルチヘッドアテンション(MA-VAE)を用いた変分オートエンコーダを提案する。
ラベルのないデータでトレーニングを行うと、MA-VAEは非常に少ない偽陽性を提供するが、提示されるほとんどの異常を検出することもできる。
異常がフラグ付けされ、異常の67%が見つかるのは、9%の時間誤りである。
論文 参考訳(メタデータ) (2023-09-05T14:05:37Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Time-Series Anomaly Detection with Implicit Neural Representation [0.38073142980733]
Inlicit Neural Representation-based Anomaly Detection (INRAD)を提案する。
入力に時間がかかり、その時点で対応する値を出力する単純な多層パーセプトロンを訓練する。
そして,その表現誤りを異常検出のための異常スコアとして利用する。
論文 参考訳(メタデータ) (2022-01-28T06:17:24Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranADはディープトランスネットワークに基づく異常検出および診断モデルである。
注意に基づくシーケンスエンコーダを使用して、データ内のより広い時間的傾向の知識を迅速に推論する。
TranADは、データと時間効率のトレーニングによる検出と診断のパフォーマンスにおいて、最先端のベースラインメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-18T19:41:29Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。