Differentially Private Multiway and $k$-Cut
- URL: http://arxiv.org/abs/2407.06911v3
- Date: Mon, 22 Jul 2024 13:37:34 GMT
- Title: Differentially Private Multiway and $k$-Cut
- Authors: Rishi Chandra, Michael Dinitz, Chenglin Fan, Zongrui Zou,
- Abstract summary: We introduce edge-differentially private algorithms that achieve nearly optimal performance for minimum $k$-cut and multiway cut problems.
For the minimum $k$-cut problem, our algorithms leverage a known bound on the number of approximate $k$-cuts, resulting in a private algorithm with optimal additive error $O(klog n)$ for fixed privacy parameter.
- Score: 5.893651469750359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the challenge of differential privacy in the context of graph cuts, specifically focusing on the minimum $k$-cut and multiway cut problems. We introduce edge-differentially private algorithms that achieve nearly optimal performance for these problems. For the multiway cut problem, we first provide a private algorithm with a multiplicative approximation ratio that matches the state-of-the-art non-private algorithm. We then present a tight information-theoretic lower bound on the additive error, demonstrating that our algorithm on weighted graphs is near-optimal for constant $k$. For the minimum $k$-cut problem, our algorithms leverage a known bound on the number of approximate $k$-cuts, resulting in a private algorithm with optimal additive error $O(k\log n)$ for fixed privacy parameter. We also establish a information-theoretic lower bound that matches this additive error. Additionally, we give an efficient private algorithm for $k$-cut even for non-constant $k$, including a polynomial-time 2-approximation with an additive error of $\widetilde{O}(k^{1.5})$.
Related papers
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - DP-Dueling: Learning from Preference Feedback without Compromising User Privacy [32.58099924135157]
We give the first differentially private dueling bandit algorithm for active learning with user preferences.
Our algorithms are computationally efficient with near-optimal performance.
We extend our results to any general decision space in $d$-dimensions with potentially infinite arms.
arXiv Detail & Related papers (2024-03-22T09:02:12Z) - Near-Optimal Differentially Private k-Core Decomposition [2.859324824091086]
We show that an $eps$-edge differentially private algorithm for $k$-core decomposition outputs the core numbers with no multiplicative error and $O(textlog(n)/eps)$ additive error.
This improves upon previous work by a factor of 2 in the multiplicative error, while giving near-optimal additive error.
arXiv Detail & Related papers (2023-12-12T20:09:07Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Private Online Prediction from Experts: Separations and Faster Rates [74.52487417350221]
Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints.
We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries.
arXiv Detail & Related papers (2022-10-24T18:40:19Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Efficient Mean Estimation with Pure Differential Privacy via a
Sum-of-Squares Exponential Mechanism [16.996435043565594]
We give the first-time algorithm to estimate the mean of a $d$-positive probability distribution with covariance from $tildeO(d)$ independent samples subject to pure differential privacy.
Our main technique is a new approach to use the powerful Sum of Squares method (SoS) to design differentially private algorithms.
arXiv Detail & Related papers (2021-11-25T09:31:15Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
We show that a modified greedy algorithm can achieve an approximation factor of $0.305$.
We derive a data-dependent upper bound on the optimum.
It can also be used to significantly improve the efficiency of such algorithms as branch and bound.
arXiv Detail & Related papers (2020-08-12T15:40:21Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.