Differentially Private Algorithms for Graph Cuts: A Shifting Mechanism Approach and More
- URL: http://arxiv.org/abs/2407.06911v4
- Date: Fri, 08 Nov 2024 02:03:48 GMT
- Title: Differentially Private Algorithms for Graph Cuts: A Shifting Mechanism Approach and More
- Authors: Rishi Chandra, Michael Dinitz, Chenglin Fan, Zongrui Zou,
- Abstract summary: We introduce edgedifferentially private algorithms for the multiway cut and the minimum $k$cut.
For the minimum $k$-cut problem we use a different approach, combining the exponential mechanism with bounds on the number of approximate $k$-cuts.
- Score: 5.893651469750359
- License:
- Abstract: In this paper, we address the challenge of differential privacy in the context of graph cuts, specifically focusing on the multiway cut and the minimum $k$-cut. We introduce edge-differentially private algorithms that achieve nearly optimal performance for these problems. Motivated by multiway cut, we propose the shifting mechanism, a general framework for private combinatorial optimization problems. This framework allows us to develop an efficient private algorithm with a multiplicative approximation ratio that matches the state-of-the-art non-private algorithm, improving over previous private algorithms that have provably worse multiplicative loss. We then provide a tight information-theoretic lower bound on the additive error, demonstrating that for constant $k$, our algorithm is optimal in terms of the privacy cost. The shifting mechanism also allows us to design private algorithm for the multicut and max-cut problems, with runtimes determined by the best non-private algorithms for these tasks. For the minimum $k$-cut problem we use a different approach, combining the exponential mechanism with bounds on the number of approximate $k$-cuts to get the first private algorithm with optimal additive error of $O(k\log n)$ (for a fixed privacy parameter). We also establish an information-theoretic lower bound that matches this additive error. Furthermore, we provide an efficient private algorithm even for non-constant $k$, including a polynomial-time 2-approximation with an additive error of $\tilde{O}(k^{1.5})$.
Related papers
- Privacy-Computation trade-offs in Private Repetition and Metaselection [28.11248357424981]
A Private Repetition algorithm takes as input a differentially private algorithm with constant success probability and boosts it to one that succeeds with high probability.
Existing algorithms for these tasks pay either a large overhead in privacy cost, or a large overhead in computational cost.
This is in stark contrast with the non-private setting, where the failure probability falls exponentially in the computational overhead.
arXiv Detail & Related papers (2024-10-22T18:33:02Z) - Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Near-Optimal Differentially Private k-Core Decomposition [2.859324824091086]
We show that an $eps$-edge differentially private algorithm for $k$-core decomposition outputs the core numbers with no multiplicative error and $O(textlog(n)/eps)$ additive error.
This improves upon previous work by a factor of 2 in the multiplicative error, while giving near-optimal additive error.
arXiv Detail & Related papers (2023-12-12T20:09:07Z) - Fast Optimal Locally Private Mean Estimation via Random Projections [58.603579803010796]
We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball.
We propose a new algorithmic framework, ProjUnit, for private mean estimation.
Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm.
arXiv Detail & Related papers (2023-06-07T14:07:35Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Efficient Mean Estimation with Pure Differential Privacy via a
Sum-of-Squares Exponential Mechanism [16.996435043565594]
We give the first-time algorithm to estimate the mean of a $d$-positive probability distribution with covariance from $tildeO(d)$ independent samples subject to pure differential privacy.
Our main technique is a new approach to use the powerful Sum of Squares method (SoS) to design differentially private algorithms.
arXiv Detail & Related papers (2021-11-25T09:31:15Z) - Numerical Composition of Differential Privacy [22.523399777002926]
We give a fast algorithm to optimally compose privacy guarantees of differentially private (DP) algorithms to arbitrary accuracy.
Our method is based on the notion of privacy loss random variables to quantify the privacy loss of DP algorithms.
arXiv Detail & Related papers (2021-06-05T09:20:15Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.