論文の概要: Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach
- arxiv url: http://arxiv.org/abs/2407.06964v1
- Date: Tue, 9 Jul 2024 15:45:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 17:37:36.932755
- Title: Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach
- Title(参考訳): 視覚変換器のパラメータ効率とメモリ効率の調整:アンタングルアプローチ
- Authors: Taolin Zhang, Jiawang Bai, Zhihe Lu, Dongze Lian, Genping Wang, Xinchao Wang, Shu-Tao Xia,
- Abstract要約: 本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
- 参考スコア(独自算出の注目度): 87.8330887605381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works on parameter-efficient transfer learning (PETL) show the potential to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters. However, since they usually insert new structures into the pre-trained model, entire intermediate features of that model are changed and thus need to be stored to be involved in back-propagation, resulting in memory-heavy training. We solve this problem from a novel disentangled perspective, i.e., dividing PETL into two aspects: task-specific learning and pre-trained knowledge utilization. Specifically, we synthesize the task-specific query with a learnable and lightweight module, which is independent of the pre-trained model. The synthesized query equipped with task-specific knowledge serves to extract the useful features for downstream tasks from the intermediate representations of the pre-trained model in a query-only manner. Built upon these features, a customized classification head is proposed to make the prediction for the input sample. lightweight architecture and avoids the use of heavy intermediate features for running gradient descent, it demonstrates limited memory usage in training. Extensive experiments manifest that our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
- Abstract(参考訳): パラメータ効率変換学習(PETL)に関する最近の研究は、学習可能なパラメータがわずかしかない下流認識タスクに事前学習されたビジョントランスフォーマーを適用する可能性を示している。
しかし、それらは通常、事前訓練されたモデルに新しい構造を挿入するため、そのモデルの中間機能全体が変更され、バックプロパゲーションに関わるために保存される必要があり、結果としてメモリの重いトレーニングが発生する。
我々は,PETLをタスク特化学習と事前学習した知識利用の2つの側面に分割する,新しいアンタングル的視点からこの問題を解決する。
具体的には、学習可能で軽量なモジュールでタスク固有のクエリを合成する。
タスク固有の知識を備えた合成クエリは、事前学習されたモデルの中間表現から、クエリのみの方法で下流タスクの有用な特徴を抽出するのに役立つ。
これらの特徴に基づいて、入力サンプルの予測を行うために、カスタマイズされた分類ヘッドを提案する。
軽量なアーキテクチャと、勾配降下を実行するための重い中間機能の使用を避けることで、トレーニングにおけるメモリ使用量の制限が示される。
大規模な実験により,本手法はメモリ制約下での最先端性能を実現し,実環境における適用可能性を示す。
関連論文リスト
- SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
人間は、ほんのわずかの例に晒された後に、新しい、目に見えない画像を正確に分類する能力を持っている。
人工ニューラルネットワークモデルでは、限られたサンプルを持つ2つのイメージを区別する最も関連性の高い特徴を決定することが課題である。
本稿では,サポートとクエリサンプルをパッチに分割するタスク内相互注意手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T02:02:57Z) - Low-Rank Rescaled Vision Transformer Fine-Tuning: A Residual Design Approach [17.678759882763078]
事前訓練されたビジョントランスフォーマーの微調整は、下流のタスクにモデルを十分にカスタマイズすることを目的としている。
事前訓練されたモデルの一般化可能な表現能力を維持することと、タスク固有の特徴を取得することのバランスを取ることは重要な課題である。
本稿では,Residual-based Low-Rank Rescaling (RLRR)ファインチューニング戦略を提案する。
論文 参考訳(メタデータ) (2024-03-28T00:14:53Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - PVP: Pre-trained Visual Parameter-Efficient Tuning [29.05396521860764]
大規模事前学習型トランスフォーマーは、様々なコンピュータビジョンタスクにおいて顕著な成功を収めている。
計算とストレージのコストが高いため、これらのモデルを下流タスクのために完全に微調整することは依然として非常に困難である。
事前学習型ビジュアルを提案する。
効率的な(PVP)チューニングフレームワーク - 最初にパラメータ効率のチューニングモジュールを事前トレーニングし、次に事前トレーニングされたモジュールを活用する。
論文 参考訳(メタデータ) (2023-04-26T15:55:29Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - Parameter-Efficient Image-to-Video Transfer Learning [66.82811235484607]
様々な下流タスクのための大規模な事前訓練されたモデルが、最近、有望なパフォーマンスで登場した。
モデルのサイズが拡大しているため、モデルトレーニングや記憶の面では、標準のフルチューニングベースのタスク適応戦略がコストがかかる。
本稿では,ビデオタスク毎のパラメータ効率の高い微調整のための新しいスペーシ・アダプタを提案する。
論文 参考訳(メタデータ) (2022-06-27T18:02:29Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - Investigating Transferability in Pretrained Language Models [8.83046338075119]
本稿では,各事前学習層が伝達タスク性能に与える影響を簡易なアブレーション手法で判定する。
この手法により、BERTでは、下流GLUEタスクにおける高いプローブ性能を持つレイヤは、それらのタスクに対して高い精度で必要でも十分でもないことが分かる。
論文 参考訳(メタデータ) (2020-04-30T17:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。