論文の概要: Category-level Object Detection, Pose Estimation and Reconstruction from Stereo Images
- arxiv url: http://arxiv.org/abs/2407.06984v2
- Date: Wed, 17 Jul 2024 11:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 21:28:12.246186
- Title: Category-level Object Detection, Pose Estimation and Reconstruction from Stereo Images
- Title(参考訳): ステレオ画像からのカテゴリーレベルの物体検出・ポーズ推定・再構成
- Authors: Chuanrui Zhang, Yonggen Ling, Minglei Lu, Minghan Qin, Haoqian Wang,
- Abstract要約: 既存の単分子法とRGB-D法は、欠落や深さの測定によるスケールの曖昧さに悩まされている。
本稿では,カテゴリーレベルの物体検出のための一段階的アプローチであるCoDERSを提案する。
私たちのデータセット、コード、デモはプロジェクトのページで公開されます。
- 参考スコア(独自算出の注目度): 15.921719523588996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the 3D object understanding task for manipulating everyday objects with different material properties (diffuse, specular, transparent and mixed). Existing monocular and RGB-D methods suffer from scale ambiguity due to missing or imprecise depth measurements. We present CODERS, a one-stage approach for Category-level Object Detection, pose Estimation and Reconstruction from Stereo images. The base of our pipeline is an implicit stereo matching module that combines stereo image features with 3D position information. Concatenating this presented module and the following transform-decoder architecture leads to end-to-end learning of multiple tasks required by robot manipulation. Our approach significantly outperforms all competing methods in the public TOD dataset. Furthermore, trained on simulated data, CODERS generalize well to unseen category-level object instances in real-world robot manipulation experiments. Our dataset, code, and demos will be available on our project page.
- Abstract(参考訳): 本研究では,物質特性の異なる日常的な物体(拡散,特異,透明,混合)を操作するための3次元物体理解タスクについて検討する。
既存の単分子法とRGB-D法は、欠落または不正確な深さ測定によるスケールの曖昧さに悩まされている。
ステレオ画像からのカテゴリーレベルの物体検出とポーズ推定と再構成のための一段階的アプローチであるCODERSを提案する。
パイプラインの基部はステレオ画像特徴と3D位置情報を組み合わせた暗黙のステレオマッチングモジュールである。
このモジュールと以下の変換デコーダアーキテクチャを組み合わせることで、ロボット操作に必要な複数のタスクをエンドツーエンドで学習することが可能になる。
我々のアプローチは、公開TODデータセットにおける競合するすべてのメソッドを著しく上回ります。
さらに、シミュレーションデータに基づいて訓練されたCODERSは、実世界のロボット操作実験において、目に見えないカテゴリレベルのオブジェクトインスタンスによく一般化する。
私たちのデータセット、コード、デモはプロジェクトのページで公開されます。
関連論文リスト
- Object-Oriented Material Classification and 3D Clustering for Improved Semantic Perception and Mapping in Mobile Robots [6.395242048226456]
本稿では,オブジェクト指向パイプライン上に構築されたRGB-D教材分類のための補足型ディープラーニング手法を提案する。
本研究では,3次元セマンティックシーンマッピングの最先端手法と比較して,材料分類と3次元クラスタリングの精度が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2024-07-08T16:25:01Z) - LASA: Instance Reconstruction from Real Scans using A Large-scale
Aligned Shape Annotation Dataset [17.530432165466507]
本稿では,新しいクロスモーダル形状再構成法とOccGOD法を提案する。
本手法は,インスタンスレベルのシーン再構成と3次元オブジェクト検出の両タスクにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T18:50:10Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z) - DONet: Learning Category-Level 6D Object Pose and Size Estimation from
Depth Observation [53.55300278592281]
単一深度画像からカテゴリレベルの6次元オブジェクト・ポースとサイズ推定(COPSE)を提案する。
筆者らのフレームワークは,深度チャネルのみの物体のリッチな幾何学的情報に基づいて推論を行う。
我々のフレームワークは、ラベル付き現実世界の画像を必要とする最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-06-27T10:41:50Z) - Stereo Object Matching Network [78.35697025102334]
本稿では,画像からの2次元コンテキスト情報と3次元オブジェクトレベル情報の両方を利用するステレオオブジェクトマッチング手法を提案する。
コストボリューム空間における3次元オブジェクト性を扱うための新しい方法として, 選択的サンプリング (RoISelect) と 2D-3D 融合がある。
論文 参考訳(メタデータ) (2021-03-23T12:54:43Z) - Info3D: Representation Learning on 3D Objects using Mutual Information
Maximization and Contrastive Learning [8.448611728105513]
本稿では,3次元形状に関するInfoMaxと対照的な学習原理を拡張することを提案する。
我々は3Dオブジェクトとその「チャンク」間の相互情報を最大化して、整列したデータセットにおける表現を改善することができることを示す。
論文 参考訳(メタデータ) (2020-06-04T00:30:26Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
LIDARデータに対する高速な1段3次元物体検出法を提案する。
我々の手法の中核となる新規性は高速かつシングルパスアーキテクチャであり、どちらも3次元の物体を検出し、それらの形状を推定する。
提案手法は,ScanNetシーンのオブジェクト検出で5%,オープンデータセットでは3.4%の精度で結果が得られた。
論文 参考訳(メタデータ) (2020-04-02T17:48:50Z) - Extending Maps with Semantic and Contextual Object Information for Robot
Navigation: a Learning-Based Framework using Visual and Depth Cues [12.984393386954219]
本稿では,RGB-D画像からのセマンティック情報を用いて,シーンのメートル法表現を付加する問題に対処する。
オブジェクトレベルの情報を持つ環境の地図表現を拡張化するための完全なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-13T15:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。