ProtoSAM: One-Shot Medical Image Segmentation With Foundational Models
- URL: http://arxiv.org/abs/2407.07042v2
- Date: Thu, 18 Jul 2024 07:58:11 GMT
- Title: ProtoSAM: One-Shot Medical Image Segmentation With Foundational Models
- Authors: Lev Ayzenberg, Raja Giryes, Hayit Greenspan,
- Abstract summary: ProtoSAM is a new framework for one-shot medical image segmentation.
It combines the use of prototypical networks, known for few-shot segmentation, with SAM - a natural image foundation model.
- Score: 29.781228739479893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a new framework, ProtoSAM, for one-shot medical image segmentation. It combines the use of prototypical networks, known for few-shot segmentation, with SAM - a natural image foundation model. The method proposed creates an initial coarse segmentation mask using the ALPnet prototypical network, augmented with a DINOv2 encoder. Following the extraction of an initial mask, prompts are extracted, such as points and bounding boxes, which are then input into the Segment Anything Model (SAM). State-of-the-art results are shown on several medical image datasets and demonstrate automated segmentation capabilities using a single image example (one shot) with no need for fine-tuning of the foundation model. Our code is available at: https://github.com/levayz/ProtoSAM
Related papers
- Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision [10.609371657347806]
This work proposes to replace conditioning on input prompts with a lightweight module that directly learns a prompt embedding from the image embedding.
Our approach is validated on MedSAM, a version of SAM fine-tuned for medical images.
arXiv Detail & Related papers (2024-09-30T13:53:01Z) - Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - Pathological Primitive Segmentation Based on Visual Foundation Model with Zero-Shot Mask Generation [3.5177988631063486]
We present a novel approach that adapts pre-trained natural image encoders of SAM for detection-based region proposals.
The entire base framework, SAM, requires no additional training or fine-tuning but could produce an end-to-end result for two fundamental segmentation tasks in pathology.
arXiv Detail & Related papers (2024-04-12T16:29:49Z) - SamDSK: Combining Segment Anything Model with Domain-Specific Knowledge
for Semi-Supervised Learning in Medical Image Segmentation [27.044797468878837]
The Segment Anything Model (SAM) exhibits a capability to segment a wide array of objects in natural images.
We propose a novel method that combines the SAM with domain-specific knowledge for reliable utilization of unlabeled images.
Our work initiates a new direction of semi-supervised learning for medical image segmentation.
arXiv Detail & Related papers (2023-08-26T04:46:10Z) - TomoSAM: a 3D Slicer extension using SAM for tomography segmentation [62.997667081978825]
TomoSAM has been developed to integrate the cutting-edge Segment Anything Model (SAM) into 3D Slicer.
SAM is a promptable deep learning model that is able to identify objects and create image masks in a zero-shot manner.
The synergy between these tools aids in the segmentation of complex 3D datasets from tomography or other imaging techniques.
arXiv Detail & Related papers (2023-06-14T16:13:27Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
arXiv Detail & Related papers (2023-06-10T07:27:00Z) - DeSAM: Decoupled Segment Anything Model for Generalizable Medical Image Segmentation [22.974876391669685]
Segment Anything Model (SAM) shows potential for improving the cross-domain robustness of medical image segmentation.
SAM performs significantly worse in automatic segmentation scenarios than when manually prompted.
Decoupled SAM modifies SAM's mask decoder by introducing two new modules.
arXiv Detail & Related papers (2023-06-01T09:49:11Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
We propose a training-free Personalization approach for Segment Anything Model (SAM)
Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior.
PerSAM segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement.
arXiv Detail & Related papers (2023-05-04T17:59:36Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
The Segment Anything Model (SAM) is a recently developed large model for general-purpose segmentation for computer vision tasks.
SAM was trained using 11 million images with over 1 billion masks and can produce segmentation results for a wide range of objects in natural scene images.
This paper shows that although SAM does not immediately give high-quality segmentation for medical image data, its generated masks, features, and stability scores are useful for building and training better medical image segmentation models.
arXiv Detail & Related papers (2023-04-22T07:11:53Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
We propose a method to enable the end-to-end pre-training for image segmentation models based on classification datasets.
The proposed method leverages a weighted segmentation learning procedure to pre-train the segmentation network en masse.
Experiment results show that, with ImageNet accompanied by PSSL as the source dataset, the proposed end-to-end pre-training strategy successfully boosts the performance of various segmentation models.
arXiv Detail & Related papers (2022-07-04T13:02:32Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.