AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder
- URL: http://arxiv.org/abs/2306.06370v1
- Date: Sat, 10 Jun 2023 07:27:00 GMT
- Title: AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder
- Authors: Tal Shaharabany, Aviad Dahan, Raja Giryes and Lior Wolf
- Abstract summary: In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
- Score: 101.28268762305916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently introduced Segment Anything Model (SAM) combines a clever
architecture and large quantities of training data to obtain remarkable image
segmentation capabilities. However, it fails to reproduce such results for
Out-Of-Distribution (OOD) domains such as medical images. Moreover, while SAM
is conditioned on either a mask or a set of points, it may be desirable to have
a fully automatic solution. In this work, we replace SAM's conditioning with an
encoder that operates on the same input image. By adding this encoder and
without further fine-tuning SAM, we obtain state-of-the-art results on multiple
medical images and video benchmarks. This new encoder is trained via gradients
provided by a frozen SAM. For inspecting the knowledge within it, and providing
a lightweight segmentation solution, we also learn to decode it into a mask by
a shallow deconvolution network.
Related papers
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
We propose a dual-branch adapted SAM framework, named DB-SAM, to bridge the gap between natural and 2D/3D medical data.
Our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature.
arXiv Detail & Related papers (2024-10-05T14:36:43Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding [15.401507589312702]
This paper introduces H-SAM, a prompt-free adaptation of the Segment Anything Model (SAM) for efficient fine-tuning of medical images.
In the initial stage, H-SAM employs SAM's original decoder to generate a prior probabilistic mask, guiding a more intricate decoding process.
Our H-SAM demonstrates a 4.78% improvement in average Dice compared to existing prompt-free SAM variants.
arXiv Detail & Related papers (2024-03-27T05:55:16Z) - MaskSAM: Towards Auto-prompt SAM with Mask Classification for Medical Image Segmentation [18.125292369318576]
MaskSAM is a mask classification prompt-free adaptation framework for medical image segmentation.
Our method achieves state-of-the-art performance on AMOS2022, 90.52% Dice, which improved by 2.7% compared to nnUNet.
arXiv Detail & Related papers (2024-03-21T03:28:24Z) - SAMCT: Segment Any CT Allowing Labor-Free Task-Indicator Prompts [28.171383990186904]
We construct a large CT dataset consisting of 1.1M CT images and 5M masks from public datasets.
We propose a powerful foundation model SAMCT allowing labor-free prompts.
Based on SAM, SAMCT is further equipped with a CNN image encoder, a cross-branch interaction module, and a task-indicator prompt encoder.
arXiv Detail & Related papers (2024-03-20T02:39:15Z) - CAT-SAM: Conditional Tuning for Few-Shot Adaptation of Segment Anything Model [90.26396410706857]
This paper presents CAT-SAM, a ConditionAl Tuning network that adapts SAM toward various unconventional target tasks.
CAT-SAM freezes the entire SAM and adapts its mask decoder and image encoder simultaneously with a small number of learnable parameters.
Cat-SAM variants achieve superior target segmentation performance consistently even under the very challenging one-shot adaptation setup.
arXiv Detail & Related papers (2024-02-06T02:00:18Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
However, when applied to medical images, SAM suffers from noticeable performance drop.
In this work, we propose to freeze SAM encoder and finetune a lightweight task-specific prediction head.
arXiv Detail & Related papers (2023-06-23T18:34:30Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
We build upon the large-scale image segmentation model, Segment Anything Model (SAM), to explore the new research paradigm of customizing large-scale models for medical image segmentation.
SAMed applies the low-rank-based (LoRA) finetuning strategy to the SAM image encoder and finetunes it together with the prompt encoder and the mask decoder on labeled medical image segmentation datasets.
Our trained SAMed model achieves semantic segmentation on medical images, which is on par with the state-of-the-art methods.
arXiv Detail & Related papers (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.