CAPformer: Compression-Aware Pre-trained Transformer for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2407.07056v2
- Date: Wed, 10 Jul 2024 11:25:26 GMT
- Title: CAPformer: Compression-Aware Pre-trained Transformer for Low-Light Image Enhancement
- Authors: Wei Wang, Zhi Jin,
- Abstract summary: Low-Light Image Enhancement (LLIE) has advanced with the surge in phone photography demand, yet many existing methods neglect compression, a crucial concern for resource-constrained phone photography.
In this study, we investigate the effects of JPEG compression on low-light images and reveal substantial information loss caused by JPEG due to widespread low pixel values in dark areas.
- Score: 22.60541726111682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Light Image Enhancement (LLIE) has advanced with the surge in phone photography demand, yet many existing methods neglect compression, a crucial concern for resource-constrained phone photography. Most LLIE methods overlook this, hindering their effectiveness. In this study, we investigate the effects of JPEG compression on low-light images and reveal substantial information loss caused by JPEG due to widespread low pixel values in dark areas. Hence, we propose the Compression-Aware Pre-trained Transformer (CAPformer), employing a novel pre-training strategy to learn lossless information from uncompressed low-light images. Additionally, the proposed Brightness-Guided Self-Attention (BGSA) mechanism enhances rational information gathering. Experiments demonstrate the superiority of our approach in mitigating compression effects on LLIE, showcasing its potential for improving LLIE in resource-constrained scenarios.
Related papers
- CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.
We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.
During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)
RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Make Lossy Compression Meaningful for Low-Light Images [26.124632089007523]
We propose a novel joint solution to simultaneously achieve a high compression rate and good enhancement performance for low-light images.
We design an end-to-end trainable architecture, which includes the main enhancement branch and the signal-to-noise ratio (SNR) aware branch.
arXiv Detail & Related papers (2023-05-24T11:14:40Z) - Multi-Modality Deep Network for JPEG Artifacts Reduction [33.02405073842042]
We propose a multimodal fusion learning method for text-guided JPEG artifacts reduction.
Our method can obtain better deblocking results compared to the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T11:54:02Z) - Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training [90.76576712433595]
Applying lossy compression on images processed by deep neural networks can lead to significant accuracy degradation.
Inspired by the curriculum learning paradigm, we present a novel training approach called curriculum pre-training (CPT) for crowd counting on compressed images.
arXiv Detail & Related papers (2022-08-15T08:43:21Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
We present a unified study of the effects of JPEG compression on a range of common tasks and datasets.
We show that there is a significant penalty on common performance metrics for high compression.
arXiv Detail & Related papers (2020-11-17T20:32:57Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.