Diffusion Model-Based Video Editing: A Survey
- URL: http://arxiv.org/abs/2407.07111v1
- Date: Wed, 26 Jun 2024 04:58:39 GMT
- Title: Diffusion Model-Based Video Editing: A Survey
- Authors: Wenhao Sun, Rong-Cheng Tu, Jingyi Liao, Dacheng Tao,
- Abstract summary: This paper reviews diffusion model-based video editing techniques, including theoretical foundations and practical applications.
We categorize video editing approaches by the inherent connections of their core technologies, depicting evolutionary trajectory.
This paper also dives into novel applications, including point-based editing and pose-guided human video editing.
- Score: 47.45047496559506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of diffusion models (DMs) has significantly advanced image and video applications, making "what you want is what you see" a reality. Among these, video editing has gained substantial attention and seen a swift rise in research activity, necessitating a comprehensive and systematic review of the existing literature. This paper reviews diffusion model-based video editing techniques, including theoretical foundations and practical applications. We begin by overviewing the mathematical formulation and image domain's key methods. Subsequently, we categorize video editing approaches by the inherent connections of their core technologies, depicting evolutionary trajectory. This paper also dives into novel applications, including point-based editing and pose-guided human video editing. Additionally, we present a comprehensive comparison using our newly introduced V2VBench. Building on the progress achieved to date, the paper concludes with ongoing challenges and potential directions for future research.
Related papers
- A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models [117.77807994397784]
Image editing aims to edit the given synthetic or real image to meet the specific requirements from users.
Recent significant advancement in this field is based on the development of text-to-image (T2I) diffusion models.
T2I-based image editing methods significantly enhance editing performance and offer a user-friendly interface for modifying content guided by multimodal inputs.
arXiv Detail & Related papers (2024-06-20T17:58:52Z) - Temporally Consistent Object Editing in Videos using Extended Attention [9.605596668263173]
We propose a method to edit videos using a pre-trained inpainting image diffusion model.
We ensure that the edited information will be consistent across all the video frames.
arXiv Detail & Related papers (2024-06-01T02:31:16Z) - VIDiff: Translating Videos via Multi-Modal Instructions with Diffusion
Models [96.55004961251889]
Video Instruction Diffusion (VIDiff) is a unified foundation model designed for a wide range of video tasks.
Our model can edit and translate the desired results within seconds based on user instructions.
We provide convincing generative results for diverse input videos and written instructions, both qualitatively and quantitatively.
arXiv Detail & Related papers (2023-11-30T18:59:52Z) - A Survey on Video Diffusion Models [103.03565844371711]
The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision.
Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers.
This paper presents a comprehensive review of video diffusion models in the AIGC era.
arXiv Detail & Related papers (2023-10-16T17:59:28Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
This report introduces the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model.
We also give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing.
We discuss available datasets, metrics, open challenges, and social implications.
arXiv Detail & Related papers (2023-10-11T05:32:29Z) - StableVideo: Text-driven Consistency-aware Diffusion Video Editing [24.50933856309234]
Diffusion-based methods can generate realistic images and videos, but they struggle to edit existing objects in a video while preserving their appearance over time.
This paper introduces temporal dependency to existing text-driven diffusion models, which allows them to generate consistent appearance for the edited objects.
We build up a text-driven video editing framework based on this mechanism, namely StableVideo, which can achieve consistency-aware video editing.
arXiv Detail & Related papers (2023-08-18T14:39:16Z) - Dreamix: Video Diffusion Models are General Video Editors [22.127604561922897]
Text-driven image and video diffusion models have recently achieved unprecedented generation realism.
We present the first diffusion-based method that is able to perform text-based motion and appearance editing of general videos.
arXiv Detail & Related papers (2023-02-02T18:58:58Z) - The Anatomy of Video Editing: A Dataset and Benchmark Suite for
AI-Assisted Video Editing [90.59584961661345]
This work introduces the Anatomy of Video Editing, a dataset, and benchmark, to foster research in AI-assisted video editing.
Our benchmark suite focuses on video editing tasks, beyond visual effects, such as automatic footage organization and assisted video assembling.
To enable research on these fronts, we annotate more than 1.5M tags, with relevant concepts to cinematography, from 196176 shots sampled from movie scenes.
arXiv Detail & Related papers (2022-07-20T10:53:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.