論文の概要: Neuromimetic metaplasticity for adaptive continual learning
- arxiv url: http://arxiv.org/abs/2407.07133v1
- Date: Tue, 9 Jul 2024 12:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 20:39:53.111286
- Title: Neuromimetic metaplasticity for adaptive continual learning
- Title(参考訳): 適応型連続学習のためのニューロミメティック・メタ塑性
- Authors: Suhee Cho, Hyeonsu Lee, Seungdae Baek, Se-Bum Paik,
- Abstract要約: 本研究では,人間の作業記憶にインスパイアされたメタ塑性モデルを提案する。
このアプローチの重要な側面は、安定から柔軟性までの異なるタイプのシナプスを実装し、それらをランダムに混在させて、柔軟性の異なるシナプス接続をトレーニングすることである。
このモデルは、追加の訓練や構造変更を必要とせず、メモリ容量と性能のバランスのとれたトレードオフを実現した。
- 参考スコア(独自算出の注目度): 2.1749194587826026
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Conventional intelligent systems based on deep neural network (DNN) models encounter challenges in achieving human-like continual learning due to catastrophic forgetting. Here, we propose a metaplasticity model inspired by human working memory, enabling DNNs to perform catastrophic forgetting-free continual learning without any pre- or post-processing. A key aspect of our approach involves implementing distinct types of synapses from stable to flexible, and randomly intermixing them to train synaptic connections with different degrees of flexibility. This strategy allowed the network to successfully learn a continuous stream of information, even under unexpected changes in input length. The model achieved a balanced tradeoff between memory capacity and performance without requiring additional training or structural modifications, dynamically allocating memory resources to retain both old and new information. Furthermore, the model demonstrated robustness against data poisoning attacks by selectively filtering out erroneous memories, leveraging the Hebb repetition effect to reinforce the retention of significant data.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)モデルに基づく従来型のインテリジェントシステムは、破滅的な忘れ込みによる人間のような継続的な学習を実現する上で、課題に直面している。
本稿では,人間の作業記憶にインスパイアされたメタ塑性モデルを提案する。
このアプローチの重要な側面は、安定から柔軟性までの異なるタイプのシナプスを実装し、それらをランダムに混在させて、柔軟性の異なるシナプス接続をトレーニングすることである。
この戦略により、予期せぬ入力長の変化の下でも、ネットワークは連続した情報のストリームを学習することができた。
このモデルは、メモリ容量と性能のバランスの取れたトレードオフを、追加のトレーニングや構造変更を必要とせずに達成し、古い情報と新しい情報の両方を保持するためにメモリ資源を動的に割り当てた。
さらに,誤記憶を選択的に除去し,Hebb繰り返し効果を利用して有意データの保持を強化することにより,データ中毒攻撃に対するロバスト性を示した。
関連論文リスト
- Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - Improving Performance in Continual Learning Tasks using Bio-Inspired
Architectures [4.2903672492917755]
我々は,シナプスの可塑性機構とニューロ変調を組み込んだ,生物学的にインスパイアされた軽量ニューラルネットワークアーキテクチャを開発した。
提案手法により,Split-MNIST,Split-CIFAR-10,Split-CIFAR-100データセット上でのオンライン連続学習性能が向上する。
さらに,鍵設計概念を他のバックプロパゲーションに基づく連続学習アルゴリズムに統合することにより,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-08-08T19:12:52Z) - Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP [2.179313476241343]
本研究では,海馬と前頭前皮質にインスパイアされた生物工学的メタラーニングモデルを提案する。
我々の新しいモデルはスパイクベースのニューロモーフィックデバイスに容易に適用でき、ニューロモーフィックハードウェアにおける高速な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-07T13:08:46Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
我々は、深層ニューラルネットワークのトレーニング中に、スケール不均衡を伴うマルチスケールダイナミクスから生じる障害モードを記述し、治療する。
PINNは、物理方程式モデルとデータとのシームレスな統合を可能にする、一般的な機械学習テンプレートである。
逐次トレーニングを用いた逆モデリングでは,逆ディリクレ重み付けがPINNを破滅的忘れから保護することがわかった。
論文 参考訳(メタデータ) (2021-07-02T10:01:37Z) - Enabling Continual Learning with Differentiable Hebbian Plasticity [18.12749708143404]
連続学習は、獲得した知識を保護しながら、新しいタスクや知識を順次学習する問題である。
破滅的な忘れ物は、そのような学習プロセスを実行するニューラルネットワークにとって、大きな課題となる。
微分可能なヘビアン塑性からなるヘビアンコンソリデーションモデルを提案する。
論文 参考訳(メタデータ) (2020-06-30T06:42:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Frosting Weights for Better Continual Training [22.554993259239307]
ニューラルネットワークモデルをトレーニングすることは、生涯にわたる学習プロセスであり、計算集約的なプロセスである。
ディープニューラルネットワークモデルは、新しいデータの再トレーニング中に破滅的な忘れに悩まされる可能性がある。
そこで我々は,この問題を解決するために,勾配向上とメタラーニングという2つの一般的なアンサンブルアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-07T00:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。