TrackFormers: In Search of Transformer-Based Particle Tracking for the High-Luminosity LHC Era
- URL: http://arxiv.org/abs/2407.07179v1
- Date: Tue, 9 Jul 2024 18:47:25 GMT
- Title: TrackFormers: In Search of Transformer-Based Particle Tracking for the High-Luminosity LHC Era
- Authors: Sascha Caron, Nadezhda Dobreva, Antonio Ferrer Sánchez, José D. Martín-Guerrero, Uraz Odyurt, Roberto Ruiz de Austri Bazan, Zef Wolffs, Yue Zhao,
- Abstract summary: High-Energy Physics experiments are facing a multi-fold data increase with every new iteration.
One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking.
A Machine Learning-assisted solution is expected to provide significant improvements.
- Score: 2.9052912091435923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking. A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.
Related papers
- FLOPS: Forward Learning with OPtimal Sampling [1.694989793927645]
gradient-based computation methods have recently gained focus for learning with only forward passes, also referred to as queries.
Conventional forward learning consumes enormous queries on each data point for accurate gradient estimation through Monte Carlo sampling.
We propose to allocate the optimal number of queries over each data in one batch during training to achieve a good balance between estimation accuracy and computational efficiency.
arXiv Detail & Related papers (2024-10-08T12:16:12Z) - Robust Visual Tracking via Iterative Gradient Descent and Threshold Selection [4.978166837959101]
We introduce a novel robust linear regression estimator, which achieves favorable performance when the error vector follows i.i.d Gaussian-Laplacian distribution.
In addition, we expend IGDTS to a generative tracker, and apply IGDTS-distance to measure the deviation between the sample and the model.
Experimental results on several challenging image sequences show that the proposed tracker outperformance existing trackers.
arXiv Detail & Related papers (2024-06-02T01:51:09Z) - FT2Ra: A Fine-Tuning-Inspired Approach to Retrieval-Augmented Code Completion [24.964973946366335]
We develop a novel retrieval-based method, FT2Ra, which aims to mimic genuine fine-tuning.
FT2Ra achieves a 4.29% improvement in accuracy compared to the best baseline method on UniXcoder.
arXiv Detail & Related papers (2024-04-02T01:42:15Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
We propose two data augmentation methods customized for tracking.
First, we optimize existing random cropping via a dynamic search radius mechanism and simulation for boundary samples.
Second, we propose a token-level feature mixing augmentation strategy, which enables the model against challenges like background interference.
arXiv Detail & Related papers (2023-09-15T09:18:54Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQ is a new formulation for scene graph generation that avoids the multi-task learning problem and the entity pair distribution.
We employ a DETR-based encoder-decoder conditional queries to significantly reduce the entity label space as well.
Experimental results show that TraCQ not only outperforms existing single-stage scene graph generation methods, it also beats many state-of-the-art two-stage methods on the Visual Genome dataset.
arXiv Detail & Related papers (2023-06-09T06:02:01Z) - Transforming Model Prediction for Tracking [109.08417327309937]
Transformers capture global relations with little inductive bias, allowing it to learn the prediction of more powerful target models.
We train the proposed tracker end-to-end and validate its performance by conducting comprehensive experiments on multiple tracking datasets.
Our tracker sets a new state of the art on three benchmarks, achieving an AUC of 68.5% on the challenging LaSOT dataset.
arXiv Detail & Related papers (2022-03-21T17:59:40Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - Exploring Opportunistic Meta-knowledge to Reduce Search Spaces for
Automated Machine Learning [8.325359814939517]
This paper investigates whether, based on previous experience, a pool of available classifiers/regressors can be preemptively culled ahead of initiating a pipeline composition/optimisation process.
arXiv Detail & Related papers (2021-05-01T15:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.