論文の概要: Pairwise Distance Distillation for Unsupervised Real-World Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2407.07302v1
- Date: Wed, 10 Jul 2024 01:46:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:11:16.261486
- Title: Pairwise Distance Distillation for Unsupervised Real-World Image Super-Resolution
- Title(参考訳): 教師なし実世界の超解像のためのペアワイズ距離蒸留法
- Authors: Yuehan Zhang, Seungjun Lee, Angela Yao,
- Abstract要約: 実世界の超解像(RWSR)は低分解能入力における未知の劣化に直面している。
既存の手法では、学習インプットの複雑な合成拡張を通じて視覚一般モデルを学習することでこの問題にアプローチする。
実世界の劣化に対する教師なしRWSRに対処するための,新しい相互距離蒸留フレームワークを提案する。
- 参考スコア(独自算出の注目度): 38.79439380482431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard single-image super-resolution creates paired training data from high-resolution images through fixed downsampling kernels. However, real-world super-resolution (RWSR) faces unknown degradations in the low-resolution inputs, all the while lacking paired training data. Existing methods approach this problem by learning blind general models through complex synthetic augmentations on training inputs; they sacrifice the performance on specific degradation for broader generalization to many possible ones. We address the unsupervised RWSR for a targeted real-world degradation. We study from a distillation perspective and introduce a novel pairwise distance distillation framework. Through our framework, a model specialized in synthetic degradation adapts to target real-world degradations by distilling intra- and inter-model distances across the specialized model and an auxiliary generalized model. Experiments on diverse datasets demonstrate that our method significantly enhances fidelity and perceptual quality, surpassing state-of-the-art approaches in RWSR. The source code is available at https://github.com/Yuehan717/PDD.
- Abstract(参考訳): 標準のシングルイメージスーパー解像度は、固定されたダウンサンプリングカーネルを通して高解像度画像からペア化されたトレーニングデータを生成する。
しかし、実世界の超解像(RWSR)は、ペアのトレーニングデータがないにもかかわらず、低分解能入力における未知の劣化に直面している。
既存の手法では、学習インプットの複雑な合成拡張を通じて視覚的一般モデルを学習することでこの問題にアプローチしている。
本稿では,教師なしのRWSRを現実の劣化のターゲットとして扱う。
我々は蒸留の観点から研究を行い、新しいペアワイズ蒸留フレームワークを導入する。
本研究の枠組みを通じて, モデル内およびモデル間距離を蒸留することにより, 合成劣化を専門とするモデルが現実の劣化に適応し, 補助的な一般化モデルが得られた。
多様なデータセットに対する実験により,RWSRの最先端アプローチを超越して,本手法は忠実度と知覚的品質を著しく向上することが示された。
ソースコードはhttps://github.com/Yuehan717/PDD.comで入手できる。
関連論文リスト
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
トレーニング中、LR入力とHR画像の整列により、誤調整問題を緩和する新しいプラグアンドプレイモジュールを提案する。
具体的には,従来のLR試料の特徴を保ちながらHRと整合する新しいLR試料を模倣する。
本手法を合成および実世界のデータセット上で総合的に評価し,SRモデルのスペクトル間での有効性を実証した。
論文 参考訳(メタデータ) (2024-10-07T18:18:54Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGenは、現実世界の超解像のために設計された教師なし学習データ生成フレームワークである。
我々は,コンテンツ分解脱結合拡散モデルに統合されたコンテンツと劣化抽出戦略を開発する。
実験により、RealDGenは、現実世界の劣化を反映する大規模で高品質なペアデータを生成するのに優れていることが示された。
論文 参考訳(メタデータ) (2024-06-11T13:34:57Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
本研究は,SRモデルの現実の画像への適応性を高めるために,新しい"Low-Res Leads the Way"(LWay)トレーニングフレームワークを導入する。
提案手法では,低分解能(LR)再構成ネットワークを用いて,LR画像から劣化埋め込みを抽出し,LR再構成のための超解出力とマージする。
私たちのトレーニング体制は普遍的に互換性があり、ネットワークアーキテクチャの変更は不要です。
論文 参考訳(メタデータ) (2024-03-05T02:29:18Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
本稿では,非局所変分オートエンコーダ(textttNLVAE)という画像固有解を提案する。
textttNLVAEは,非局所領域からの非絡み合った情報を用いて高解像度画像を再構成する自己教師型戦略として導入された。
7つのベンチマークデータセットによる実験結果から,textttNLVAEモデルの有効性が示された。
論文 参考訳(メタデータ) (2022-04-02T18:43:55Z) - Generalized Real-World Super-Resolution through Adversarial Robustness [107.02188934602802]
本稿では,実世界のSRに取り組むために,敵攻撃の一般化能力を活用したロバスト超解法を提案する。
我々の新しいフレームワークは、現実世界のSR手法の開発においてパラダイムシフトをもたらす。
単一のロバストモデルを使用することで、実世界のベンチマークで最先端の特殊な手法より優れています。
論文 参考訳(メタデータ) (2021-08-25T22:43:20Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
我々は,超解像残差畳み込み生成共役ネットワーク(SRResCGAN)を提案する。
これは、生成したLRドメインからHRドメインの画素単位の監督でモデルを逆トレーニングすることで、現実世界の劣化設定に従う。
提案するネットワークは,画像の高精細化と凸最適化によるエネルギーベース目的関数の最小化により,残差学習を利用する。
論文 参考訳(メタデータ) (2020-05-03T00:12:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。