High-Resolution Cloud Detection Network
- URL: http://arxiv.org/abs/2407.07365v1
- Date: Wed, 10 Jul 2024 04:54:03 GMT
- Title: High-Resolution Cloud Detection Network
- Authors: Jingsheng Li, Tianxiang Xue, Jiayi Zhao, Jingmin Ge, Yufang Min, Wei Su, Kun Zhan,
- Abstract summary: This paper introduces the High-Resolution Cloud Detection Network (HR-cloud-Net)
HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multi-resolution pyramid pooling module.
A novel approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images.
- Score: 4.717213036330225
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The complexity of clouds, particularly in terms of texture detail at high resolutions, has not been well explored by most existing cloud detection networks. This paper introduces the High-Resolution Cloud Detection Network (HR-cloud-Net), which utilizes a hierarchical high-resolution integration approach. HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multi-resolution pyramid pooling module to effectively capture complex cloud features. This architecture preserves detailed cloud texture information while facilitating feature exchange across different resolutions, thereby enhancing overall performance in cloud detection. Additionally, a novel approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images. This setup enables the student to learn from cleaner supervisions provided by the teacher, leading to improved performance. Extensive evaluations on three optical satellite image cloud detection datasets validate the superior performance of HR-cloud-Net compared to existing methods.The source code is available at \url{https://github.com/kunzhan/HR-cloud-Net}.
Related papers
- Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images [22.054023867495722]
Cloud segmentation is a critical challenge in remote sensing image interpretation.
We present a parameter-efficient adaptive approach, termed Cloud-Adapter, to enhance the accuracy and robustness of cloud segmentation.
arXiv Detail & Related papers (2024-11-20T08:37:39Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
We present an iterative diffusion process for cloud removal (IDF-CR)
IDF-CR is divided into two-stage models that address pixel space and latent space.
In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output.
arXiv Detail & Related papers (2024-03-18T15:23:48Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
We present a hybrid-view-based knowledge distillation framework, termed HVDistill, to guide the feature learning of a point cloud neural network.
Our method achieves consistent improvements over the baseline trained from scratch and significantly out- performs the existing schemes.
arXiv Detail & Related papers (2024-03-18T14:18:08Z) - Diffusion Enhancement for Cloud Removal in Ultra-Resolution Remote
Sensing Imagery [48.14610248492785]
Cloud layers severely compromise the quality and effectiveness of optical remote sensing (RS) images.
Existing deep-learning (DL)-based Cloud Removal (CR) techniques encounter difficulties in accurately reconstructing the original visual authenticity and detailed semantic content of the images.
This work proposes enhancements at the data and methodology fronts to tackle this challenge.
arXiv Detail & Related papers (2024-01-25T13:14:17Z) - Distribution-aware Interactive Attention Network and Large-scale Cloud
Recognition Benchmark on FY-4A Satellite Image [24.09239785062109]
We develop a novel dataset for accurate cloud recognition.
We use domain adaptation methods to align 70,419 image-label pairs in terms of projection, temporal resolution, and spatial resolution.
We also introduce a Distribution-aware Interactive-Attention Network (DIAnet), which preserves pixel-level details through a high-resolution branch and a parallel cross-branch.
arXiv Detail & Related papers (2024-01-06T09:58:09Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural encoders.
The learned point-cloud can be easily integrated into various downstream tasks, including not only high-level rendering tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image rendering.
arXiv Detail & Related papers (2022-12-31T08:58:39Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - Cloud detection machine learning algorithms for PROBA-V [6.950862982117125]
The objective of the algorithms presented in this paper is to detect clouds accurately providing a cloud flag per pixel.
The effectiveness of the proposed method is successfully illustrated using a large number of real Proba-V images.
arXiv Detail & Related papers (2020-12-09T18:23:59Z) - Single Image Cloud Detection via Multi-Image Fusion [23.641624507709274]
A primary challenge in developing algorithms is the cost of collecting annotated training data.
We demonstrate how recent advances in multi-image fusion can be leveraged to bootstrap single image cloud detection.
We collect a large dataset of Sentinel-2 images along with a per-pixel semantic labelling for land cover.
arXiv Detail & Related papers (2020-07-29T22:52:28Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z) - Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery via
Filtered Jaccard Loss Function and Parametric Augmentation [8.37609145576126]
Current methods for cloud/shadow identification in geospatial imagery are not as accurate as they should, especially in the presence of snow and haze.
This paper presents a deep learning-based framework for the detection of cloud/shadow in Landsat 8 images.
arXiv Detail & Related papers (2020-01-23T19:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.