Secondary Structure-Guided Novel Protein Sequence Generation with Latent Graph Diffusion
- URL: http://arxiv.org/abs/2407.07443v1
- Date: Wed, 10 Jul 2024 07:54:26 GMT
- Title: Secondary Structure-Guided Novel Protein Sequence Generation with Latent Graph Diffusion
- Authors: Yutong Hu, Yang Tan, Andi Han, Lirong Zheng, Liang Hong, Bingxin Zhou,
- Abstract summary: We introduce CPDiffusion-SS, a latent graph diffusion model that generates protein sequences based on coarse-grained secondary structural information.
We show that CPDiffusion-SS offers greater flexibility in producing a variety of novel amino acid sequences while preserving overall structural constraints.
We provide a series of case studies to highlight the biological significance of the generation performance by the proposed method.
- Score: 8.26010811027237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of deep learning has introduced efficient approaches for de novo protein sequence design, significantly improving success rates and reducing development costs compared to computational or experimental methods. However, existing methods face challenges in generating proteins with diverse lengths and shapes while maintaining key structural features. To address these challenges, we introduce CPDiffusion-SS, a latent graph diffusion model that generates protein sequences based on coarse-grained secondary structural information. CPDiffusion-SS offers greater flexibility in producing a variety of novel amino acid sequences while preserving overall structural constraints, thus enhancing the reliability and diversity of generated proteins. Experimental analyses demonstrate the significant superiority of the proposed method in producing diverse and novel sequences, with CPDiffusion-SS surpassing popular baseline methods on open benchmarks across various quantitative measurements. Furthermore, we provide a series of case studies to highlight the biological significance of the generation performance by the proposed method. The source code is publicly available at https://github.com/riacd/CPDiffusion-SS
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design [30.241533997522236]
We develop context-guided diffusion (CGD), a simple plug-and-play method that leverages unlabeled data and smoothness constraints to improve the out-of-distribution generalization of guided diffusion models.
This approach leads to substantial performance gains across various settings, including continuous, discrete, and graph-structured diffusion processes with applications across drug discovery, materials science, and protein design.
arXiv Detail & Related papers (2024-07-16T17:34:00Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
We present the first unified benchmark NovoBench for emphde novo peptide sequencing.
It comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics.
Recent methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $pi$-HelixNovo are integrated into our framework.
arXiv Detail & Related papers (2024-06-16T08:23:21Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
Deep generative modeling techniques have been employed to generate novel protein conformations.
We propose a force-guided SE(3) diffusion model, ConfDiff, for protein conformation generation.
arXiv Detail & Related papers (2024-03-21T02:44:08Z) - Diffusion on language model embeddings for protein sequence generation [0.5442686600296733]
We introduce DiMA, a model that leverages continuous diffusion to generate amino acid sequences.
We quantitatively illustrate the impact of the design choices that lead to its superior performance.
Our approach consistently produces novel, diverse protein sequences that accurately reflect the inherent structural and functional diversity of the protein space.
arXiv Detail & Related papers (2024-03-06T14:15:20Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.