論文の概要: Exploring the Untouched Sweeps for Conflict-Aware 3D Segmentation Pretraining
- arxiv url: http://arxiv.org/abs/2407.07465v2
- Date: Wed, 17 Jul 2024 14:32:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 21:28:12.184070
- Title: Exploring the Untouched Sweeps for Conflict-Aware 3D Segmentation Pretraining
- Title(参考訳): 衝突を意識した3次元セグメンテーション事前学習のための非接触スイープ探索
- Authors: Tianfang Sun, Zhizhong Zhang, Xin Tan, Yanyun Qu, Yuan Xie,
- Abstract要約: LiDARカメラによる3D画像の事前学習は、3D知覚タスクと関連する応用に有意な可能性を示唆している。
未探索フレームからLiDAR-画像ペアを精巧に選択するための,ビジョン・ファウンデーション・モデル駆動型サンプル探索モジュールを提案する。
我々の手法は、既存の最先端の事前訓練フレームワークを3つの主要な公道走行データセットで一貫して上回っている。
- 参考スコア(独自算出の注目度): 41.145598142457686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-camera 3D representation pretraining has shown significant promise for 3D perception tasks and related applications. However, two issues widely exist in this framework: 1) Solely keyframes are used for training. For example, in nuScenes, a substantial quantity of unpaired LiDAR and camera frames remain unutilized, limiting the representation capabilities of the pretrained network. 2) The contrastive loss erroneously distances points and image regions with identical semantics but from different frames, disturbing the semantic consistency of the learned presentations. In this paper, we propose a novel Vision-Foundation-Model-driven sample exploring module to meticulously select LiDAR-Image pairs from unexplored frames, enriching the original training set. We utilized timestamps and the semantic priors from VFMs to identify well-synchronized training pairs and to discover samples with diverse content. Moreover, we design a cross- and intra-modal conflict-aware contrastive loss using the semantic mask labels of VFMs to avoid contrasting semantically similar points and image regions. Our method consistently outperforms existing state-of-the-art pretraining frameworks across three major public autonomous driving datasets: nuScenes, SemanticKITTI, and Waymo on 3D semantic segmentation by +3.0\%, +3.0\%, and +3.3\% in mIoU, respectively. Furthermore, our approach exhibits adaptable generalization to different 3D backbones and typical semantic masks generated by non-VFM models.
- Abstract(参考訳): LiDARカメラによる3D画像の事前学習は、3D知覚タスクと関連する応用に有意な可能性を示唆している。
しかし、このフレームワークには2つの問題がある。
1) 単独のキーフレームをトレーニングに使用する。
例えば、nuScenesでは、大量のLiDARとカメラフレームが未使用のままであり、事前訓練されたネットワークの表現能力を制限している。
2) コントラッシブ・ロスは, 同一のセマンティクスを持つ点や画像領域を, 異なるフレームから誤って距離を置き, 学習したプレゼンテーションのセマンティクスの整合性を阻害する。
本稿では、未探索フレームからLiDAR-画像ペアを慎重に選択し、元のトレーニングセットを豊かにするための、ビジョン・ファウンデーション・モデル駆動型サンプル探索モジュールを提案する。
タイムスタンプとVFMのセマンティック先行情報を用いて、よく同期したトレーニングペアを特定し、多様な内容のサンプルを発見する。
さらに,VFMのセマンティックマスクラベルを用いて,相互・内部のコントラストを意識したコントラスト損失を設計し,セマンティックな類似点や画像領域のコントラストを回避する。
提案手法は, 3次元セマンティックセマンティックセマンティックセマンティクスにおいて, nuScenes, SemanticKITTI, Waymoの3次元セマンティックセマンティクスを, mIoUでは+3.0\%, +3.0\%, +3.3\%と, 既存の最先端プレトレーニングフレームワークを常に上回っている。
さらに, 本手法は, 異なる3次元バックボーンおよび非VFMモデルにより生成される典型的なセマンティックマスクに対する適応的な一般化を示す。
関連論文リスト
- Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
カメラによるセマンティックシーンの補完を改善するための,新たな時間的文脈学習パラダイムであるHTCLを提案する。
提案手法は,Semantic KITTIベンチマークで1st$をランク付けし,mIoUの点でLiDARベースの手法を超えている。
論文 参考訳(メタデータ) (2024-07-02T09:11:17Z) - Fine-grained Image-to-LiDAR Contrastive Distillation with Visual Foundation Models [55.99654128127689]
Visual Foundation Models (VFM) は、3D表現学習を強化するために使用される。
VFMは、弱制御された画素間コントラスト蒸留のためのセマンティックラベルを生成する。
我々は,空間分布とカテゴリー周波数の不均衡に対応するために,点のサンプリング確率を適応させる。
論文 参考訳(メタデータ) (2024-05-23T07:48:19Z) - Building a Strong Pre-Training Baseline for Universal 3D Large-Scale Perception [41.77153804695413]
汎用的な3D表現を備えた効果的な事前学習フレームワークは、大規模な動的シーンを知覚するのに非常に望ましい。
本研究では,シーンレベルのセマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマン
論文 参考訳(メタデータ) (2024-05-12T07:58:52Z) - Visual Foundation Models Boost Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation [17.875516787157018]
本研究では,2次元視覚基礎モデルから得られた知識を活用して,ラベルのない対象ドメインのより正確なラベルを生成する方法について検討する。
本手法は, 各種自律走行データセットを用いて評価し, 3次元セグメンテーションタスクにおいて有意な改善が得られた。
論文 参考訳(メタデータ) (2024-03-15T03:58:17Z) - TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding [28.112402580426174]
TriAdapter Multi-Modal Learning (TAMM)は3つの相乗的アダプタに基づく新しい2段階学習手法である。
TAMMは、広範囲の3Dエンコーダアーキテクチャ、事前トレーニングデータセット、下流タスクの3D表現を一貫して強化する。
論文 参考訳(メタデータ) (2024-02-28T17:18:38Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
マルチビュー画像を用いた3次元シーンの占有状況とセマンティクスを推定することを目的とした,新たな課題である3D占有予測手法を提案する。
本稿では,RandOccを提案する。Rendering Assisted distillation paradigm for 3D Occupancy prediction。
論文 参考訳(メタデータ) (2023-12-19T03:39:56Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View
Completion [20.121597331207276]
Masked Image Modeling (MIM)は、最近、強力な事前学習パラダイムとして確立されている。
本稿では,多種多様な3次元視覚と下層の幾何学的下流課題によく伝達される表現を学習することを目的とする。
実験の結果,本研究のプリテキストタスクは,モノラルな3次元視覚の下流タスクの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2022-10-19T16:50:36Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
マルチパーソン・ヒューマン・ポーズ推定のためのデプロイフレンドリーで高速なボトムアップ・フレームワークを提案する。
我々は,人物の位置を対応する3Dポーズ表現と統一する,多人数の3Dポーズのニューラル表現を採用する。
ペア化された2Dまたは3Dポーズアノテーションが利用できない実用的な配置パラダイムを提案する。
論文 参考訳(メタデータ) (2020-08-04T07:54:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。