Review-LLM: Harnessing Large Language Models for Personalized Review Generation
- URL: http://arxiv.org/abs/2407.07487v1
- Date: Wed, 10 Jul 2024 09:22:19 GMT
- Title: Review-LLM: Harnessing Large Language Models for Personalized Review Generation
- Authors: Qiyao Peng, Hongtao Liu, Hongyan Xu, Qing Yang, Minglai Shao, Wenjun Wang,
- Abstract summary: Large Language Models (LLMs) have shown superior text modeling and generating ability.
We propose Review-LLM that customizes LLMs for personalized review generation.
- Score: 8.898103706804616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Product review generation is an important task in recommender systems, which could provide explanation and persuasiveness for the recommendation. Recently, Large Language Models (LLMs, e.g., ChatGPT) have shown superior text modeling and generating ability, which could be applied in review generation. However, directly applying the LLMs for generating reviews might be troubled by the ``polite'' phenomenon of the LLMs and could not generate personalized reviews (e.g., negative reviews). In this paper, we propose Review-LLM that customizes LLMs for personalized review generation. Firstly, we construct the prompt input by aggregating user historical behaviors, which include corresponding item titles and reviews. This enables the LLMs to capture user interest features and review writing style. Secondly, we incorporate ratings as indicators of satisfaction into the prompt, which could further improve the model's understanding of user preferences and the sentiment tendency control of generated reviews. Finally, we feed the prompt text into LLMs, and use Supervised Fine-Tuning (SFT) to make the model generate personalized reviews for the given user and target item. Experimental results on the real-world dataset show that our fine-tuned model could achieve better review generation performance than existing close-source LLMs.
Related papers
- AI-Driven Review Systems: Evaluating LLMs in Scalable and Bias-Aware Academic Reviews [18.50142644126276]
We evaluate the alignment of automatic paper reviews with human reviews using an arena of human preferences by pairwise comparisons.
We fine-tune an LLM to predict human preferences, predicting which reviews humans will prefer in a head-to-head battle between LLMs.
We make the reviews of publicly available arXiv and open-access Nature journal papers available online, along with a free service which helps authors review and revise their research papers and improve their quality.
arXiv Detail & Related papers (2024-08-19T19:10:38Z) - Show, Don't Tell: Aligning Language Models with Demonstrated Feedback [54.10302745921713]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.
We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Language-Based User Profiles for Recommendation [24.685132962653793]
The Language-based Factorization Model (LFM) is an encoder/decoder model where both the encoder and the decoder are large language models (LLMs)
The encoder LLM generates a compact natural-language profile of the user's interests from the user's rating history.
We evaluate our LFM approach on the MovieLens dataset, comparing it against matrix factorization and an LLM model that directly predicts from the user's rating history.
arXiv Detail & Related papers (2024-02-23T21:58:50Z) - Reviewer2: Optimizing Review Generation Through Prompt Generation [27.379753994272875]
We propose an efficient two-stage review generation framework called Reviewer2.
Unlike prior work, this approach explicitly models the distribution of possible aspects that the review may address.
We generate a large-scale review dataset of 27k papers and 99k reviews that we annotate with aspect prompts.
arXiv Detail & Related papers (2024-02-16T18:43:10Z) - LLMRS: Unlocking Potentials of LLM-Based Recommender Systems for
Software Purchase [0.6597195879147557]
Large Language Models (LLM) offer promising results for analyzing user queries.
We propose LLMRS, an LLM-based zero-shot recommender system where we employ pre-trained LLM to encode user reviews into a review score and generate user-tailored recommendations.
arXiv Detail & Related papers (2024-01-12T16:33:17Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.