LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback
- URL: http://arxiv.org/abs/2311.09336v5
- Date: Fri, 25 Oct 2024 04:28:06 GMT
- Title: LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback
- Authors: Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj Juraska, Biao Zhang, Zhongtao Liu, William Yang Wang, Lei Li, Markus Freitag,
- Abstract summary: Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
- Score: 65.84061725174269
- License:
- Abstract: Recent large language models (LLM) are leveraging human feedback to improve their generation quality. However, human feedback is costly to obtain, especially during inference. In this work, we propose LLMRefine, an inference time optimization method to refine LLM's output. The core idea is to use a learned fine-grained feedback model to pinpoint defects and guide LLM to refine them iteratively. Using original LLM as a proposal of edits, LLMRefine searches for defect-less text via simulated annealing, trading off the exploration and exploitation. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization. LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
Related papers
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
We introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions.
To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline.
Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback.
arXiv Detail & Related papers (2024-10-09T01:25:10Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
Large language models (LLMs) can achieve results comparable to fine-tuned multilingual pre-trained language models.
This paper explores what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate machine translation quality.
arXiv Detail & Related papers (2024-10-04T09:50:45Z) - Cross-Refine: Improving Natural Language Explanation Generation by Learning in Tandem [14.537146664859902]
Like humans, large language models (LLMs) might not always produce optimal explanations on first attempt.
We introduce Cross-Refine, which employs role modeling by deploying two LLMs as generator and critic, respectively.
The generator outputs a first NLE and then refines this initial explanation using feedback and suggestions provided by the critic.
arXiv Detail & Related papers (2024-09-11T09:21:20Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Re-Ex: Revising after Explanation Reduces the Factual Errors in LLM Responses [9.956253757863145]
We propose Re-Ex, a method for post-editing large language models (LLMs)-generated responses.
Re-Ex introduces a novel reasoning step dubbed as the factual error explanation step.
In addition to the explanation step, Re-Ex also incorporates new prompting techniques to reduce the token count and inference time required for the response revision process.
arXiv Detail & Related papers (2024-02-27T00:22:18Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) is a novel method to improve large language models' reasoning abilities.
RCoT automatically detects and rectifys factual inconsistency in generated solutions.
We show that manually written fine-grained feedback can dramatically improve LLMs' reasoning abilities.
arXiv Detail & Related papers (2023-05-19T08:02:52Z) - Self-Refine: Iterative Refinement with Self-Feedback [62.78755306241981]
Self-Refine is an approach for improving initial outputs from large language models (LLMs) through iterative feedback and refinement.
We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs.
Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.
arXiv Detail & Related papers (2023-03-30T18:30:01Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.