IRSAM: Advancing Segment Anything Model for Infrared Small Target Detection
- URL: http://arxiv.org/abs/2407.07520v1
- Date: Wed, 10 Jul 2024 10:17:57 GMT
- Title: IRSAM: Advancing Segment Anything Model for Infrared Small Target Detection
- Authors: Mingjin Zhang, Yuchun Wang, Jie Guo, Yunsong Li, Xinbo Gao, Jing Zhang,
- Abstract summary: Infrared Small Target Detection (IRSTD) task falls short in achieving satisfying performance due to a notable domain gap between natural and infrared images.
We propose the IRSAM model for IRSTD, which improves SAM's encoder-decoder architecture to learn better feature representation of infrared small objects.
- Score: 55.554484379021524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent Segment Anything Model (SAM) is a significant advancement in natural image segmentation, exhibiting potent zero-shot performance suitable for various downstream image segmentation tasks. However, directly utilizing the pretrained SAM for Infrared Small Target Detection (IRSTD) task falls short in achieving satisfying performance due to a notable domain gap between natural and infrared images. Unlike a visible light camera, a thermal imager reveals an object's temperature distribution by capturing infrared radiation. Small targets often show a subtle temperature transition at the object's boundaries. To address this issue, we propose the IRSAM model for IRSTD, which improves SAM's encoder-decoder architecture to learn better feature representation of infrared small objects. Specifically, we design a Perona-Malik diffusion (PMD)-based block and incorporate it into multiple levels of SAM's encoder to help it capture essential structural features while suppressing noise. Additionally, we devise a Granularity-Aware Decoder (GAD) to fuse the multi-granularity feature from the encoder to capture structural information that may be lost in long-distance modeling. Extensive experiments on the public datasets, including NUAA-SIRST, NUDT-SIRST, and IRSTD-1K, validate the design choice of IRSAM and its significant superiority over representative state-of-the-art methods. The source code are available at: github.com/IPIC-Lab/IRSAM.
Related papers
- Unleashing the Power of Generic Segmentation Models: A Simple Baseline for Infrared Small Target Detection [57.666055329221194]
We investigate the adaptation of generic segmentation models, such as the Segment Anything Model (SAM), to infrared small object detection tasks.
Our model demonstrates significantly improved performance in both accuracy and throughput compared to existing approaches.
arXiv Detail & Related papers (2024-09-07T05:31:24Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Performance Evaluation of Segment Anything Model with Variational Prompting for Application to Non-Visible Spectrum Imagery [15.748043194987075]
This work assesses Segment Anything Model capabilities in segmenting objects of interest in the X-ray/infrared modalities.
Our results show that SAM can segment objects in the X-ray modality when given a box prompt, but its performance varies for point prompts.
We find that infrared objects are also challenging to segment with point prompts given the low-contrast nature of this modality.
arXiv Detail & Related papers (2024-04-18T16:04:14Z) - Distilling Semantic Priors from SAM to Efficient Image Restoration Models [80.83077145948863]
In image restoration (IR), leveraging semantic priors from segmentation models has been a common approach to improve performance.
Recent segment anything model (SAM) has emerged as a powerful tool for extracting advanced semantic priors to enhance IR tasks.
We propose a general framework to distill SAM's semantic knowledge to boost exiting IR models without interfering with their inference process.
arXiv Detail & Related papers (2024-03-25T02:17:20Z) - HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection [16.92362922379821]
We propose a deep learning method to improve infrared small object detection performance.
The method includes the parallelized patch-aware attention (PPA) module, dimension-aware selective integration (DASI) module, and multi-dilated channel refiner (MDCR) module.
arXiv Detail & Related papers (2024-03-16T02:45:42Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - RSAM-Seg: A SAM-based Approach with Prior Knowledge Integration for
Remote Sensing Image Semantic Segmentation [10.37240769959699]
Segment Anything Model (SAM) provides a universal pre-training model for image segmentation tasks.
We propose RSAM-Seg, which stands for Remote Sensing SAM with Semantic, as a tailored modification of SAM for the remote sensing field.
Adapter-Scale, a set of supplementary scaling modules, are proposed in the multi-head attention blocks of the encoder part of SAM.
Experiments are conducted on four distinct remote sensing scenarios, encompassing cloud detection, field monitoring, building detection and road mapping tasks.
arXiv Detail & Related papers (2024-02-29T09:55:46Z) - MTU-Net: Multi-level TransUNet for Space-based Infrared Tiny Ship
Detection [42.92798053154314]
We develop a space-based infrared tiny ship detection dataset (namely, NUDT-SIRST-Sea) with 48 space-based infrared images and 17598 pixel-level tiny ship annotations.
Considering the extreme characteristics of those tiny ships in such challenging scenes, we propose a multi-level TransUNet (MTU-Net) in this paper.
Experimental results on the NUDT-SIRST-Sea dataset show that our MTU-Net outperforms traditional and existing deep learning based SIRST methods in terms of probability of detection, false alarm rate and intersection over union.
arXiv Detail & Related papers (2022-09-28T00:48:14Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.