Trainable Highly-expressive Activation Functions
- URL: http://arxiv.org/abs/2407.07564v2
- Date: Thu, 11 Jul 2024 11:47:05 GMT
- Title: Trainable Highly-expressive Activation Functions
- Authors: Irit Chelly, Shahaf E. Finder, Shira Ifergane, Oren Freifeld,
- Abstract summary: We introduce DiTAC, a trainable highly-expressive activation function.
DiTAC enhances model expressiveness and performance, often yielding substantial improvements.
It also outperforms existing activation functions (regardless of whether the latter are fixed or trainable) in tasks such as semantic segmentation, image generation, regression problems, and image classification.
- Score: 8.662179223772089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear activation functions are pivotal to the success of deep neural nets, and choosing the appropriate activation function can significantly affect their performance. Most networks use fixed activation functions (e.g., ReLU, GELU, etc.), and this choice might limit their expressiveness. Furthermore, different layers may benefit from diverse activation functions. Consequently, there has been a growing interest in trainable activation functions. In this paper, we introduce DiTAC, a trainable highly-expressive activation function based on an efficient diffeomorphic transformation (called CPAB). Despite introducing only a negligible number of trainable parameters, DiTAC enhances model expressiveness and performance, often yielding substantial improvements. It also outperforms existing activation functions (regardless whether the latter are fixed or trainable) in tasks such as semantic segmentation, image generation, regression problems, and image classification. Our code is available at https://github.com/BGU-CS-VIL/DiTAC.
Related papers
- Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features [115.33889811527533]
Diffusion models are initially designed for image generation.
Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative tasks.
arXiv Detail & Related papers (2024-10-04T16:05:14Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Activation Functions: Dive into an optimal activation function [1.52292571922932]
We find an optimal activation function by defining it as a weighted sum of existing activation functions.
The study uses three activation functions, ReLU, tanh, and sin, over three popular image datasets.
arXiv Detail & Related papers (2022-02-24T12:44:11Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Growing Cosine Unit: A Novel Oscillatory Activation Function That Can
Speedup Training and Reduce Parameters in Convolutional Neural Networks [0.1529342790344802]
Convolution neural networks have been successful in solving many socially important and economically significant problems.
Key discovery that made training deep networks feasible was the adoption of the Rectified Linear Unit (ReLU) activation function.
New activation function C(z) = z cos z outperforms Sigmoids, Swish, Mish and ReLU on a variety of architectures.
arXiv Detail & Related papers (2021-08-30T01:07:05Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
We propose a simple task-specific feature map transformation strategy for continual learning.
Theses provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture.
We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative sequences of tasks.
arXiv Detail & Related papers (2021-03-25T01:48:14Z) - A survey on modern trainable activation functions [0.0]
We propose a taxonomy of trainable activation functions and highlight common and distinctive proprieties of recent and past models.
We show that many of the proposed approaches are equivalent to adding neuron layers which use fixed (non-trainable) activation functions.
arXiv Detail & Related papers (2020-05-02T12:38:43Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
We propose two new multi-spike learning rules which demonstrate better performance over other baselines on various tasks.
In the feature detection task, we re-examine the ability of unsupervised STDP with its limitations being presented.
Our proposed learning rules can reliably solve the task over a wide range of conditions without specific constraints being applied.
arXiv Detail & Related papers (2020-05-02T06:41:20Z) - Trainable Activation Function in Image Classification [0.0]
This paper focus on how to make the activation function trainable for deep neural networks.
We use series and linear combination of different activation functions make activation functions continuously variable.
arXiv Detail & Related papers (2020-04-28T03:50:53Z) - Evolutionary Optimization of Deep Learning Activation Functions [15.628118691027328]
We show that evolutionary algorithms can discover novel activation functions that outperform the Rectified Linear Unit (ReLU)
replacing ReLU with evolved activation functions results in statistically significant increases in network accuracy.
These novel activation functions are shown to generalize, achieving high performance across tasks.
arXiv Detail & Related papers (2020-02-17T19:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.