論文の概要: On Leakage of Code Generation Evaluation Datasets
- arxiv url: http://arxiv.org/abs/2407.07565v1
- Date: Wed, 10 Jul 2024 11:50:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:51:55.711644
- Title: On Leakage of Code Generation Evaluation Datasets
- Title(参考訳): コード生成評価データセットの漏洩について
- Authors: Alexandre Matton, Tom Sherborne, Dennis Aumiller, Elena Tommasone, Milad Alizadeh, Jingyi He, Raymond Ma, Maxime Voisin, Ellen Gilsenan-McMahon, Matthias Gallé,
- Abstract要約: コード生成テストセットによる汚染について考察する。
我々の発見の鍵は161のプロンプトと関連するピソン溶液のデータセットである。
- 参考スコア(独自算出の注目度): 44.4726918027046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we consider contamination by code generation test sets, in particular in their use in modern large language models. We discuss three possible sources of such contamination and show findings supporting each of them: (i) direct data leakage, (ii) indirect data leakage through the use of synthetic data and (iii) overfitting to evaluation sets during model selection. Key to our findings is a new dataset of 161 prompts with their associated python solutions, dataset which is released at https://huggingface.co/datasets/CohereForAI/lbpp .
- Abstract(参考訳): 本稿では,コード生成テストセットによる汚染について考察する。
このような汚染の原因を3つ議論し、それぞれを裏付ける知見を示す。
(i)直接データ漏洩
二 合成データを利用した間接的データ漏洩
三 モデル選択時の評価セットに過度に適合すること。
このデータセットはhttps://huggingface.co/datasets/CohereForAI/lbpp でリリースされています。
関連論文リスト
- Leveraging Large Language Models in Code Question Answering: Baselines and Issues [0.1617522438111378]
本稿では,Pythonのソースコードに対する質問応答のために,大規模言語モデルを用いた研究について述べる。
提案手法は,Pythonコードの問合せと解答の統一データセット上で,大規模言語モデルを微調整することを含む。
手動エラー解析の結果とともに,BLEU-4,BERTScore F1,BLEURT,Exact Matchの測定値について報告する。
論文 参考訳(メタデータ) (2024-11-05T11:25:12Z) - CodeInsight: A Curated Dataset of Practical Coding Solutions from Stack Overflow [10.19019476978683]
データセットは、明確化インテント、コードスニペットの関連、関連する3つのユニットテストの平均を含む例を提供する。
Pythonの専門家が作成した3,409の例を補完する私たちのデータセットは、モデル微調整とスタンドアロン評価の両方のために設計されています。
論文 参考訳(メタデータ) (2024-09-25T11:18:52Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
本稿では,複数選択肢の内容に基づいた簡易かつ効果的なデータ漏洩検出手法を提案する。
本手法は,モデルトレーニングデータや重みを使用せずに,ブラックボックス条件下で動作することができる。
我々は,4つのベンチマークデータセットを用いて,31個の主要なオープンソースLCMのデータ漏洩の程度を評価する。
論文 参考訳(メタデータ) (2024-09-03T11:09:44Z) - Fact Checking Beyond Training Set [64.88575826304024]
本稿では,レトリバーリーダが,あるドメインのラベル付きデータに基づいてトレーニングし,別のドメインで使用する場合,性能劣化に悩まされることを示す。
本稿では,レトリバー成分を分散シフトに対して頑健にするための逆アルゴリズムを提案する。
次に、これらのデータセットから8つの事実チェックシナリオを構築し、モデルと強力なベースラインモデルのセットを比較します。
論文 参考訳(メタデータ) (2024-03-27T15:15:14Z) - A Little Leak Will Sink a Great Ship: Survey of Transparency for Large Language Models from Start to Finish [47.3916421056009]
大規模言語モデル(LLM)は、大規模なウェブクローリングコーパスで訓練されている。
LLMは、トレーニングセットでそのようなデータが少ないにもかかわらず、ほとんどの場合、漏洩した情報を生成する。
自己検出法は既存の検出法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-24T13:21:58Z) - LatestEval: Addressing Data Contamination in Language Model Evaluation
through Dynamic and Time-Sensitive Test Construction [21.553915781660905]
LatestEvalは、最新のテキストを活用して、非汚染読影理解評価を作成する自動手法である。
これは、最近のタイムウインドウで公開されたテキストのみを使用することでデータ汚染を回避し、事前訓練された言語モデルのトレーニングコーパスと重複しないようにする。
実験の結果,従来のベンチマークとは対照的に,言語モデルは LatestEval 上で無視可能な記憶行動を示すことがわかった。
論文 参考訳(メタデータ) (2023-12-19T17:16:43Z) - Rethinking Benchmark and Contamination for Language Models with
Rephrased Samples [49.18977581962162]
大規模な言語モデルは、これまで人間が生成したすべてのデータに基づいて、ますます訓練されている。
多くの人は、事前トレーニングや微調整のデータセットが汚染される可能性があるとして、公開ベンチマークの信頼性を懸念している。
論文 参考訳(メタデータ) (2023-11-08T17:35:20Z) - Towards Mitigating more Challenging Spurious Correlations: A Benchmark & New Datasets [43.64631697043496]
ディープニューラルネットワークは、しばしばクラスラベルと急激な相関を持つ非予測的特徴を利用する。
急激な相関を修復する最近の研究が増えているにもかかわらず、標準化されたベンチマークの欠如は再現可能な評価を妨げている。
本稿では,PythonパッケージであるSpuCoについて述べる。
論文 参考訳(メタデータ) (2023-06-21T00:59:06Z) - The Gap on GAP: Tackling the Problem of Differing Data Distributions in
Bias-Measuring Datasets [58.53269361115974]
バイアスモデルを検出する診断データセットは、自然言語処理におけるバイアス低減の重要な前提条件である。
収集されたデータの望ましくないパターンは、そのようなテストを誤ったものにします。
実験データにおけるそのようなパターンに対処するために, 実験サンプルを重み付けする理論的基礎的手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T16:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。